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1. Introduction 

Time-varying volatility models have been extensively used to analyze time series data. The Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) and the Stochastic Volatility (SV) models are major and competitive volatility models. 
They are well-known in financial data analysis. According to Jouchi (2009), these models and their extensions capture the 
pattern and trend of data, especially in finance, like stock prices.   

Bollerslev (1986) first suggested that the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is 
defined as successive dependence of volatility and combined prior observations into the future volatility.  

Nelson (1991) formulates the Exponential Generalized Autoregressive Conditional Heteroskedastic (E-GARCH) 
specification. It is aimed at addressing the leverage effect in the volatility. On the other hand, the GARCH model with leverage 
effect had been treated differently by Glosten, Jagannathan, and Runkle (1991) as the Glosten, Jagannathan, and Runkle 
Generalized Autoregressive Conditional Heteroskedasticity (GJR-GARCH) model and this became a standard for the Asymmetric 
Power Autoregressive Conditional Heteroskedasticity (APARCH) model. Conversely, Stochastic Volatility (SV) models have been 
studied and established to be a continuous-time probability process. It is severally applied in financial econometrics as submitted 
by Ghysels, Harvey, and Renault (1995). The volatility variance is assumed to be non-linear, with an additional error term which 
makes the model more flexible. In the word of Francq and Zakoian (2010), Modeling return volatility of the stock over a given 
period of time seems very complex and difficult as the data series can often be viewed using different frequencies of observation; 
this may be in seconds, minutes, hours, days, months and years. One of the distinguishing features of stock volatility is that it 
reveals an element of risk or uncertainty, Tsay (2005). The volatility of an asset can simply measure this risk or uncertainty. The 
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Abstract:  
The problem of how best to model volatility of stock prices returns have continued to occupy the minds of researchers 
in this area. This study therefore compares the performance of two competitive volatility models: The Stochastic 
Volatility (SV) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) based on skewed error 
distributions models using daily stock returns of Fourteen Nigerian banks. The daily stock closing price of the selected 
banks were collected for the period 4/1/2007 to 31/12/2021 and the stationarity, normality and ARCH effect of the 
series were tested. The parameter of SV and different types of GARCH models based on skewed normal, skewed student 
t and skewed generalized error distribution were estimated and selection of the best model was done using Akaike 
Information Criterion (AIC). Post estimation and evaluation were carried out using the Mean Square Error (MSE) and 
Root Mean Square Error (RMSE). Results of analysis revealed a stationary but asymmetrically distributed return 
series with ARCH effect. The model forecasting performance proved APARCH (1,1) based on student t-distribution as 
the best among the competing GARCH models with the record of the least AIC value in ten of the fourteen daily bank 
stocks returns. Although, APARCH (1,1) and SV models were found to be comparable. SV model was however 
recommended as the best since it recorded the least RMSE value in 11 (79%) of the 14 bank stocks against 3 
(21%) bank stock in favour of APARCH (1,1). This implies that SV model was found to be adequate in 
modeling volatility of the daily stock returns of ECO Bank, First City Monument bank, Fidelity bank, first bank, 
Guaranty Trust bank, Stanbic IBTC bank, Sterling bank, United Bank for Africa, Union bank, WEMA bank and Zenith 
bank; while APARCH (1,1) base on Skewed student ‘t’ distribution was preferred in modeling volatility of Access bank, 
Skye Bank and Unity bank. Results also showed the presence of volatility persistence, suggesting uncertainties and the 
risk of losses by investors. Therefore, it can be deduced that the application of a stochastic volatility model to the 
selected stock returns would drastically minimize the losses by investors. 
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problem often encountered while modeling stock volatility is the concept of non-stationarity, Bruce (2011). Non-stationarity 
occurs when the underlying rules that generate the time series change occasionally, often without any indication that a change is 
about to happen. According to Sherry and Sherry (2000), while dealing with a non-stationary time series data, one is essentially 
dealing with a high level of uncertainty. Therefore, there is a maximum risk to investment.     

The GARCH family of models is observation-driven, whereas the Stochastic Volatility models are parameter-driven. 
Apart from the presence of heteroscedasticity, some of the motivations for using the GARCH family of models are that time series 
of financial asset returns often exhibit volatility clustering and fat tails or leptokurtosis. Here, the current volatility is strongly 
related to the volatility present in the immediate past, Brooks (2008); Francq and Zakoian (2010). Leptokurtosis occurs when 
the distribution of the return of an asset exhibits fatter tails and is more peaked at zero than that of a standard normal 
distribution. Another reason for using the GARCH family of models is that financial time series often exhibit a leverage effect, 
which is an asymmetry of the impact of past positive and negative values on the current volatility. It is often seen that negative 
returns (a price decrease) tend to increase the volatility by a larger amount than a positive return (price increase) of the same 
amount Francq and Zakoian (2010).       

The Stochastic Volatility models have not been used as widely as the GARCH family of models. One of the reasons for this 
is that the likelihood for the Stochastic Volatility models is not easy to evaluate, which is not the case with the GARCH models, 
Shimada and Tsukuda (2005). There are two reasons for the difficulty in estimating the likelihood for Stochastic Volatility 
models.  

 Firstly, the variance is modeled as an unobserved component.  
 Secondly, the model is non-Gaussian.  
This results in complicated likelihood estimation, Mahieu, and Schotman (1998). 

 
1.1. Statement of Problem           
 The study of stock price volatility has gained popularity over the years due to its importance in both financial markets 
and government planning. However, several studies have been conducted on understanding and modeling stock price volatility. 
This includes, among others:  

 A research to examine the stock returns volatility in view of the global financial crisis in Nigeria, Olowe (2009);   
 Modeling volatility of four Nigerian firms using GARCH model by Onwukwe, Bassey, and Isaac (2011),  
 Modeling and forecasting of volatility pattern of daily returns of fifteen (15) Nigerian Commercial banks stocks by 

Onwukwe, Samson, and Lipsey (2014).  
 Finally, the study concluded that E-GARCH (1,1) model was the appropriately forecasting model among other 

works.  
However, GARCH model considered in those studies is a deterministic model. This is in contrast to Brooks (2008), who 

showed that stock price volatility is in itself stochastic and skewed.  
The work of Alberg, Shalit, and Zhang (2009) showed that using error innovation with skewed parameters improved 

fitness and forecasting performance of volatility. The findings of Samson, Onwukwe, and Enang (2020) that in modeling volatility 
without using error distribution with a skewed parameter may not give a true estimate of the actual volatility in the financial 
time series. Also, a few studies, including Kim et al. (1998), Giot and Laurent (2004), examined the model comparisons among the 
models GARCH and SV models. However, none has compared the forecasting performance of GARCH based on skewed 
innovations with SV models. In view of the preceding, it is evident that an attempt to model volatility with GARCH without 
considering various skewed innovations may be inappropriate, misrepresented, and misleading. Therefore, this study seeks to 
model the volatility of daily stock returns of fourteen (14) Nigerian banks using GARCH model based on the skewed error 
distribution model and Stochastic Volatility model and further compare the forecasting performance to determine the most 
appropriate model. The success of this work would further present a more appropriate and reliable volatility model. The model 
would help financial planners, investors, risk managers, economists, policymakers, government agencies, corporate 
organizations, and researchers to plan and implement policies and research to improve the profit margin and strengthen the 
national economy. 

 
2. Methods 
 
2.1. Study Data 

This study used daily closing stock price data of fourteen (14) selected Nigerian banks, namely: Access Bank, ECO Bank, 
First City Monument Bank (FCMB), Fidelity, First Bank, Guaranty Trust Bank, Stanbic IBTC bank, Skye Bank, United Bank for 
Africa (UBA), Unity Bank, WEMA Bank, Union Bank, Zenith Bank. These banks are listed on the Nigerian Stock Exchange of 
Commercial Banks License with International and National Authorization to model its volatility. The data were collected on a 
daily basis for Fourteen (14) years starting from 4th January, 2007 to 31st December, 2021 from www.cashcraft.com. We use 
data from 4th January, 2007 to December, 31st 2019 for model formation and data from 4th January 2021 to 21st December 2021 
(out-of-sample) for model forecast performance. 

 
2.2. Computations of Return Series from Price          

The daily logarithm returns were calculated from the logarithm of the daily closing price, which is given by: 
௧ݎ = ݊ܫ  ቀ ௣೟

௣೟షభ
ቁ , t = 2,3, … , T                                                                                                                                                  (1) 

Where ݌ଵ and ݌௧ିଵ are the closing prices at times ݐ and ݐ − 1, respectively. T is the number of observations (Ruppert, (2004).  
 
2.3. Normality of the Return Series        

This test assesses whether the returns residual of the chosen stocks are normally distributed. We test for normality of 
the series using the Jacque Bera (B) test denoted by:  

http://www.ijird.com
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ܤ = ௡
଺
ቂߩଶ + (ఎିଷ)మ

ସ
ቃ          (2) 

Where, ߩ is the skewness and ߟ is the kurtosis. If η<0, it is platykurtic; if ߟ > 0, it is excess kurtosis, and if η=0, it is mesokurtic. 
     ଶଶ and the null hypothesis is rejected if the p< 0.05߯~ܤ
              
2.4. Test for Stationarity of Return Series        

The Augmented Dickey-Fuller Test (ADF) was used to test the stationarity of the daily returns series. Given null and 
alternative hypotheses as 
ߠ:଴ܪ = 1  and ܪଵ:ߠ < 1 respectively 
The test Statistic:  
t-ratio = ఏ෡ିଵ

ௌ௧ௗ(ఏ)
= ∑ ௉೟షభक़೟೅

ೝసమ

ఙෝమට∑ ௉೟షభమ೅
ೝసమ

         (3) 

where  ߠ෠ = ∑ ௉೟షభ௉೟೅
ೝసమ

ට∑ ௉೟షభమ೅
ೝసమ

                                  (4) 

and   ߪොଶ = ൫∑ ௉೟ିఏ෡௉೟షభ೅
ೝసమ ൯

మ

்ିଵ
           (5) 

T is the total number of observations of the returns. The ܪ଴ is rejected if ܲ < 0.05 
 
2.5. Heteroscedasticity Test 

The Lagrange multiplier test (LMT) statistic was applied to the series to check for heteroscedasticity (ARCH effect). The 
conditional heteroscedasticity can be expressed as: 
ܽ௧ଶ = ଵܽ௧ିଵଶߙ+଴ߙ + ௡ܽ௧ି௡ଶߙ+⋯ ,௧ߝ+ ݐ = ݊ + 1, … ,ܶ               (6) 
The hypotheses to be tested are: 
ଵߙ:௢ܪ = ⋯ = ௡ߙ⋯ = 0  vs  ܪଵ:ߙ௧ ≠ 0 for some ݅ ∈ {1,2, … ,݉} 
Test statistic  
ܨ = (ௌௌோబିௌௌோభ) ௠⁄

ௌௌோభ(்ିଶ௠ିଵ)
                                          (7) 

where 
ܴܵܵ଴ = ∑ (ܽ௧ଶ்

௧ୀ௠ାଵ − ഥ߱)ଶ; ܵܵ ଵܴ = ∑ ݁̂௧ଶ்
௧ୀ௠ାଵ ; ഥ߱ = ଵ

்
∑ ܽ௧ଶ்
௧ୀଵ  

Where ݁̂௧ଶ is a square error (8), ܴܵܵ଴ is the total sum of squares, and ഥ߱ is the sample mean of  ܽ௧ଶ. The test statistic is assumed to 
follow the chi-square distribution with m degree of freedom. Therefore, we reject ܪ௢݂݅ܨ > ߯௠ଶ where ߯௠ଶ ,(ߙ)  is the upper (ߙ)
100(1−  percentile of chi-squared distribution with m degrees of freedom, or if the p-value of F is less than 0.05, and T is the (ߙ
number of observation Tsay (2005). 
 
2.6. Volatility Models Considered in the Study 
 
2.6.1. GARCH Models and Its Extension 
 
2.6.1.1. Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Models 

The GARCH (p,q) model is given by 
௧ݎ = μ + ܽ௧ ௧ଶߪ       , = ଴ߙ  + ୧ܽ௧ି୧ ଶߙ + ௧ି୨ ଶߪ୨ߚ       ; ܽ௧ = ௧ߝ௧ߪ                                                                                                     (8 )   
Where ߝ௧~N(0,1). ,୧ߙ,଴ߙ  ௝ߚ   ≥ 0 for ߪ௧ଶ to be positive and for stationarity ߙ୧ + ୨ߚ  <  ,୨ is GARCH termߚ  ୧ is ARCH term whileߙ ;1
௧ߪ  is volatility, ݎ௧ is returns and ܽ௧ is the residuals. 
Thus, ߙ୧ ୨ߚ + < 1 for variance to be finite 
 
2.6.1.2. Integrated Generalized Autoregressive Conditional Heteroscedasticity (I-GARCH) Model 

The integrated GARCH (I-GARCH) process was designed to model data that exhibit persistent changes in volatility.  
The IGARCH model is given as: 
௧ݎ = μ + ܽ௧ ௧ଶߪ       , = ଴ߙ  + ௜ܽ௧ି୧ ଶߙ + ௧ି୨ ଶߪ୨ߚ       ; ܽ௧ = ௧ߝ௧ߪ                                                                                                      (9)             
 Where ߙ଴  is a constant, ߙ୧is ARCH term while ߚ௝ is GARCH term, ߪ௧  is volatility, ݎ௧ is returns, and ܽ௧ is the residuals. The GARCH 
(p, q) process is called I-GARCH if  

෍ߙ୧

୯

୧ୀଵ

+෍ߚ୨

୮

୨ୀଵ

= 1                                                                                                                                           (10) 

This is the stationary condition for I-GARCH (Ruppert, 2004). 
2.6.1.3. Exponential Generalized Autoregressive Conditional Heteroscedasticity (E-Garch) 

The Exponential GARCH (E-GARCH) model was first introduced by (Nelson, 1991). The model allows for asymmetric 
effects between positive and negative asset returns.  

An E-GARCH (p,q) model can be written as: 

௧ݎ = μ + ܽ௧ , (௧ଶߪ)݊ܫ = ଴ߙ + ෍ߙ௜ ቌܽߠ௧ି௜ + ௜ߛ  ቎|ܽ௧ି௜|− ඨ2
቏ቍߨ

௣

௜ୀଵ

+ ෍ߪ)݊ܫߚ௧ି௝ଶ )
௤

௝ୀଵ

                                                   (11)       

where ߙ଴ is a constant, ߙ୧ is ARCH term while ߚ୨ is GARCH term, ߛ is the leverage term, ߪ௧  is volatility, ݎ௧ is returns, and ܽ௧ is the 
residuals. It is strictly stationary if and only if |ߚ| < 1 
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2.6.1.4. Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH)  
According to Rossi (2004), the asymmetric power ARCH model, proposed by Ding et al. (1993), given below, forms the 

basis for deriving the GARCH family models. 
ݎ = ߤ + ܽ௧ ௧ఋߪ   , = ଴ߙ + ൫∑ ௜(|ܽ௧ି௜|)ߙ

௣
௜ୀଵ − ௜ܽ௧ି௜൯ߛ

ఋ +∑ ௧ି௝ଶߪ௝൫ߚ ൯௤
௝ୀଵ  ఋ                                                                                (12) 

Where ߙ଴ > 0, ߜ ≥ ௜ߙ   .0 ≥ 0, ݅ = 1,2 … . , ݌ − 1, ݅ = 1, 2, … ௝ߚ ;݌, ≥ 0, ݆ = 1, 2, … , ݍ − 1 and −1 < ௜ߛ < 1 . If p=1, we have 
APARCH (1,1) 
 
2.6.1.5. Threshold Generalized Autoregressive Conditional Heteroscedasticity (T-GARCH) Model 

The Threshold GARCH model is another model used to handle leverage effects; it was developed by Glosten et al. (1993). 
T-GARCH (p,q) model is given by the following: 
௧ଶߪ = ଴ߙ + ∑ (௣

௜ୀଵ ௜ߙ + ௜ߛ ௧ܰି௜)ܽ௧ି௜ଶ +∑ ௧ି௝ଶ௤ߪ௝ߚ
௝ୀଵ                                                                                                                        (13)  

where ௧ܰି௜ is an indicator for negative ܽ௧ି௜; that is, 

௧ܰି௜ = ൜
1 ݂݅ܽ௧ି௜ < 0
0 ݂݅ܽ௧ି௜ ≥ 0,     

Furthermore, ܽ௧, ߛ௜ and ߚ௝ are non-negative parameters satisfying conditions similar to those of GARCH models (Tsay, 2005). 
When p = 1, q = 1, the T-GARCH (1,1) model becomes: 
௧ଶߪ = ଴ߙ + ௜ߙ) + ௜ߛ ௧ܰି௜)ܽ௧ି௜ଶ + ௧ି௝ଶߪ௝ߚ                                                                                                                                           (14) 
 
2.6.1.6. Gloseten-Jagannathan-Runkle Generalized Autoregressive Conditional Heteroscedasticity (GJR-GARCH) Model 

The GJR-GARCH (p,q) Model, which is a model that attempts to address volatility clustering in an innovation process, is 
obtained by letting ߜ = 2. when ߜ = 2 and 0 ≤ ௜ߛ < 1, 
If p=1, and q=1, we have GJR_GARCH (1,1) as: 
௧ଶߪ = ଴ߙ + ∑ )௜ߙ

௣
௜ୀଵ |ܽ௧ି௜|− ௜ܽ௧ି௜)ଶߛ +∑ ௝ߚ

௤
௝ୀଵ ௧ି௝ଶߪ   ;       ܽ௧ = ௧ߝ௧ߪ                                                                                        (15) 

 
2.6.2. Skewed Distribution 
 
2.6.2.1. The Skewed Normal Distribution Has the Pdf 

f(ߝ௧) =  ଵ
ఏగ
݁

(ഄ೟షഛ)మ

మഇమ    ∫ ఌ೟ିణ
ఏ

ఉ
ିஶ    ݁

೟మ
మ ∞−                  ,ݐ݀     < ௧ߝ < ∞                                                                                              (16) 

where ߴ is the location parameter, ߠ is the scale, and ߚ is the shape parameter. 
 
2.6.2.2. Skewed Students' Distribution  

The Skewed Student ‘t’ Distribution has the pdf. 

௧ߝ)݂ ,∅,ߴ,ߤ, (ߣ =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ܾܿ ൦1 +

1
߶ − 2ቌ

ܾ ቀߪ௧ − ߤ
ߴ ቁ+ ܽ

1 − ߣ ቍ

ଶ

൪

ିఘାଵଶ

௧ߝ < −
ܽ
ܾ

  

ܾܿ ൦1 +
1

߶ − 2ቌ
ܾ ቀߪ௧ − ߤ

ߴ ቁ+ ܽ
1 + ߣ ቍ

ଶ

൪

ିఘାଵଶ

௧ߝ ≥ −
ܽ
ܾ

,                                                                                 (17) 

Where ∅ and ߣ  represent the shape and skewness parameters respectively 

ࢇ = ૝ܿߣ ቀ∅ିଶ
∅ିଵ

ቁ, ܾ = 1 + ଶߣ3 − ܽଶ, ࢉ =
୻ቀ∅శభమ ቁ

ටగ(∅ିଶ)୻ቀ∅మቁ
 

 
2.6.2.3. Skewed Generalized Error Distribution 
  

,ߠ,૑,ߩ/௧ߝ)݂ (ߜ =  
ߩ

߁ߠ2 ቀ1
ρቁ

−ቈ  ݌ݔ݁ 
௧ߝ| − ఘ|ߜ

[1 + ௧ߝ)݊݃݅ݏ − ఘఏഐ቉[ܽ(ߜ                                                                                                   (18) 

ߠ > 0,−∞ < ௧ߝ < ∞, ߩ > 0,−1 < ૑ < ૚,   −∝< ߜ < ∞ 

ߠ = ߁  ቀଵ
஡
ቁ
଴.ହ
߁ ቀଷ

୴
ቁ
ି଴.ହ

ܵ(߱)ିଵ, ߜ = 2߱ܵ(߱)ିଵ, ܵ(߱) = √1 + 3߱ଶ − ܣ        ,ଶ߱ଶܣ4 =

߁ ቀଶ
஡
ቁ߁ ቀଵ

஡
ቁ
ି଴.ହ

߁ ቀଷ
஡
ቁ
ି଴.ହ

 

Where   ߩ > 0 is parameter shape, ߱ is skewness parameter with  −1 < ܽ > 1 
 
2.6.3. Stochastic Volatility (SV) Model 

Kim, Shephard, and Chib (1998) represented SV as: 
௧ݎ = ݁ߚ

೓೟
మ ܽ௧ ݐ                                              ≥ 1                                                                                                                                (19) 

ℎ௧ = ߤ + ߮(ℎ௧ିଵ − (ߤ + ௧ߝఌߪ                                                                                                                                                        (20) 
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where ݎ௧ is the mean corrected return at time t, ℎ௧ is the log-volatility at time t, which is assumed to follow a stationary 
process  (|߮| < 1) with ℎ௧ drawn from a stationary distribution, ܽ௧  and ߝ௧  are uncorrelated standard normal white noise shocks, 
and ߪఌ  are the volatility of the log-volatility. The parameter ߚ or ݁

ഋ
మ  is a constant scaling factor and can be considered modal 

instantaneous volatility. In some cases, ߤ is taken as0, so ߚ will be 1. ߮ is the persistence in the volatility. 
Note that the estimation of the process of SV is not directly observable. Therefore, an addition likelihood function must 

be constructed to include the behavior of the collected data. Jaquier et al. (1994) propose a Bayesian approach, using the Monte 
Carlo Markov Chain (MCMC) technique where the posterior distribution of the parameter is sampled. The parameter space is 
,ߠ) ℎ) where ߠ = ,ఌଶߪ,߮)  :and the sampling algorithm is given in Kim, Shephard, and Chip (1998) as follows ,(ߤ
1. Initialize ℎ  ܽ݊݀ θ. 
2. Sample ℎ௧ from ℎି௧ , ,ݎ ,ߠ ݐ = 1, … ,ܶ 
3. Sample  ߪఌଶ|ݎ, ℎ,߮,  ߤ
4. Sample  ߮|ݎ, ℎ,  ఌଶߪ,ߤ
5. Sample ݎ|ߤ, ℎ,߮,  ఌଶߪ
6. Go to 2. 
Cycling from 2 to 5 is a complete sweep of this sampler. Many sweeps should be performed to generate samples from ߠ, ℎ|ݎ 

Kim, Shephard, and Chip (1998) stated all of the parameters mentioned above explicitly. 
 
2.7. Estimation of the Parameter 

The parameters of these volatility models are estimated using Rugarch package and Stocvol in R programme. 
 

2.8. Model Diagnostic and Selection Criterion         
Akaike Information Criterions (AIC) is used in model selection criteria which are given as: 

AIC = 2β − 2In(LL) = 2β + 2In ൬
RSS

n ൰                                                                                                                     (21) 

Where, RSS=∑ eොଶ୘
୧ୀଵ  is the residual sum of squares 

LL is the maximized value of the log-likelihood for the estimated volatility model, and β is the number of independent 
parameters in the model.  

This technique selects the model with the least value of AIC. It is computed as: 
 
2.9. Model Forecasting Performance                 

The Root Mean Squared Error (RMSE) statistic is used for model forecasting. The Statistic is given as:  

RMSE =
1

T− 1
ඩ෍(ߪො௧ଶ − ௧ଶ)ଶߪ

்

௧ୀଶ

                                                                                                                                                          (22) 

 
2.10. Comparison of GARCH and Stochastic Volatility Models 

The GARCH model for each of the bank returns would be compared with the Stochastic Volatility model estimated using 
RMSE. The model with the least RMSE was considered appropriate and fitted the respective bank stocks. 
 
3. Results 
 
3.1. Descriptive Statistics 

The descriptive statistic of the daily stock returns data of the fourteen (14) selected bank stocks are presented in table 1. 
The results showed that the mean return series for all the banks except Stanbic IBTC bank were negative. This implies that all the 
selected banks recorded a loss during the study period except Stanbic IBTC bank. Furthermore, the returns series exhibit high 
kurtosis and are asymmetrically distributed since the Jacque Bera statistics p-values were all less than 5%. This finding agreed 
with Dikko et al. (2015) of non-normally distributed return series.  
 
3.2. Augmented Dickey-Fuller Test for Stationarity 

The statistic of the ADF shows that the series was stationary since the ADF statistic is greater than 1% critical level. 
Therefore, there was no need for transformation (table 2). This finding agreed with the previous studies of Dikko et al. (2015) 
and Ozkan P. (2004). Bruce D. (2011) and Agboola et al. (2015) used the ADF test to test the stationarity of the return series.  

 
3.3. Autoregressive Conditional Heteroscedasticity (ARCH) Effect Test 

In order to estimate the volatility, an ARCH effect test was carried out to test for the presence in the series using the 
Lagrange Multiplier F Statistic. The result showed the presence of ARCH effect with a p-value level of less than 1% (table 2). This 
finding agreed with the works of Ozkan (2004) and Bruce (2011) using Lagrange Multiplier in testing the presence of the ARCH 
effect, which shows the significant effect and therefore suggests the application of the volatility model. 
 
3.4. Estimates of the Parameters of GARCH Models and Its Extension Based on Daily Stock Returns from 14 Nigerian Banks  

Tables 3 and 4 presented the parameter estimates of the GARCH model and its extension estimated at three error 
distributions, such as Skewed normal, Skewed Student-distribution, and Skewed generalized error distribution, using daily stock 
returns from 14 Nigerian banks. Table 3 showed the preferred GARCH model based on skewed error distribution, indicating its 
log-likelihood values and AIC value. The model with the least AIC value and highest Log-likelihood value was selected as 
preferred for each of the banks. Table 4 showed the parameter estimate for the model so selected with respect to error 
distributions.         
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The results further showed that the returns exhibited volatility clustering. This was concluded because the GARCH term 
was significant in most of the models considered (p<0.05). This implies that small changes in the volatility of returns tend to be 
followed by large changes in volatility. In contrast, small changes in volatility tend to be followed by small changes in volatility.  

 
3.5. Estimate of SV Model  

The parameter estimate of SV model is presented in table 5. Monte Carlo Markov Chain (MCMC) technique was used to 
estimate the parameters of SV model (Kim, Shephard, and Chip, 1998). The result showed minimal and acceptable Monte Carlos 
Standard Error (MCSE) for the mean (ߤ) and returned log-variance (߮), which implies that the shocks in the log-variance are 
persistent in all the selected bank returns. 
 
3.6. Forecasting Performance of the Estimated Models 

The forecasting performance of the two models is evaluated and presented in table 6. The Mean Square Error (MSE) and 
Root Mean Square Error (RMSE) were used as recommended by Franses (2016) and Khair et al. (2017). The model with the least 
MSE and RMSE values was considered the most suitable for forecasting. The error indicator shows that SV minimizes the error 
for forecasting in a period of high or low volatility. Generally, the MSE and RMSE are smaller in the SV model than in the GARCH 
model {APARCH (1,1) based on Skewed Student 't' distribution} in most of the bank stock. Therefore, SV model is considered the 
best to predict the variability in the daily stock returns in eleven (11) banks, namely: ECO Bank, First City Monument bank, 
Fidelity bank, first bank, Guaranty Trust bank, Stanbic IBTC bank, Sterling bank, United Bank for Africa, Union bank, WEMA bank, 
and Zenith bank.  

In contrast, IAPARCH (1,1) based on Skewed student 't' distribution was preferred in modeling volatility of the daily 
stock returns of only three (3) banks, namely: Access bank, Skye Bank, and Unity bank. 

 
4. Conclusion 

The GARCH and stochastic volatility models provide an essential tool to assist analysts while attempting to model the 
returns volatility. This work clearly shows that GARCH and Stochastic volatility models are highly comparable in modeling the 
daily returns of the selected bank stocks. However, SV model remains the preferred choice when an attempt is made to model the 
volatility of most of the daily returns of Nigerian bank stocks.   

We found that the Skewed student 't' distribution outperformed other error distributions. APARCH (1,1) is preferred 
over IGARCH, TGARCH, SGARCH, and GJR-GARCH models selected in terms of fitness and forecasting power with the record of 
the least AIC, MSE, and RMSE value in most of the chosen bank stock returns. This finding perfectly agreed with Alberg, Shalit, 
and Yosef (2008).        

The findings of this study correspond with that of Oscar (2016), Ezequiel and Martha (2021), Ozkan (2004), Dondukova 
and Liu (2021). All these studies showed and proved the superiority of SV over GARCH-type models. We further showed that SV 
model, though comparable with APARCH (1,1), based on skewed student t distribution, is the appropriate and best for modeling 
financial time series data, especially the daily stock returns of the selected Nigerian bank stocks. 
 
5. Recommendation 

Based on the findings of this study, we recommend that the stochastic volatility model should be used in modeling the 
returns of the chosen bank stock and that further work could be done using a multiple stochastic volatility model. 
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Table 1: Summary Statistics of Daily Stock Returns of the Selected Stocks 
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Table 2: Augmented Dickey-Fuller and the Lagrange Multiplier Tests for Stationarity and Heteroscedasticity 
1% Critical = -3.44, 5% Critical = -2.86, 10% Critical = -2.57 

 
S/N Bank Model Innovation Log 

Likelihood 
Weighted ARCH LM Tests AIC 
P-Value Statistic 

1 ACCESS BANK APARCH (1,1) SSTD 9058.901 0.9838 0.00041 -6.8638 
2 ECOBANK EGARCH (1,1) SGED 10,369.50 0.9773 0.00081 -6.2854 
3 FCMB EGARCH (1,1) SGED 8,691.39 0.7829 0.07594 -7.1823 
4 FIDELITY APARCH (1,1) SGED 8703.801 0.9844 0.00038 -6.5945 
5 FIRST BANK APARCH (1,1) SSTD 8921.864 0.9844 0.00038 -6.7727 
6 GTB APARCH (1,1) SGED 8300.539 0.5622 0.336 -6.5494 
7 STANBIC IBTC EGARCH (1,1) SGED 7,608.66 0.9381 0.00604 -9.7947 
8 SKYE APARCH (1,1) SSTD 8759.104 0.9797 0.00064 -6.9945 
9 STERLING GJRGARCH (1,1) SSTD 8639.049 0.9844 0.00038 -6.5511 

10 UBA APARCH (1,1) SSTD 8404.56 0.9844 0.00038 -6.3699 
11 UNITY APARCH (1,1) SSTD 12996.22 0.9844 0.00038 -9.8545 
12 UNION APARCH (1,1) SSTD 8313.841 0.9845 0.00038 -6.2654 
13 WEMA APARCH (1,1) SSTD 14746.79 0.964 0.00203 -11.182 
14 ZENITH APARCH (1,1) SSTD 8808.386 0.9844 0.00038 -6.7351 

Table 3: Model Selection of GARCH (1, 1) and Its Extensions Considered Based on Simulated Returns from Skewed Distribution 
 

 
Bank 

 
Models 

 
ID 

 ૙ࢻ
(p-value) 1  

(p-value) 
1  

(p-value) 
1  

(p-value) 

  
(p-value) 

ACCESS APARCH (1,1) SSTD 0.00000 
(0.96954) 

0.21687 
(0.00000) 

0.81902  
(0.00000) 

0.25004 
(0.00000) 

0.30978  
(0.00000) 

ETI EGARCH (1,1) SGED -0.172026   
(0.00000) 

0.243955 
(0.00000) 

0.965460  
(0.00000) 

0.962055 
(0.00000) 

 

FCMB EGARCH (1,1) SGED 0.067742 
(0.00000) 

0.218451 
(0.00000) 

0.960368  
(0.00000) 

1.634385 
(0.00000) 

 

FIDELITY APARCH (1,1) SSTD 0.00000 
(0.992794) 

0.496530 
(0.00000) 

0.72359 
(0.00000) 

0.11546  
(0.00000) 

0.96716  
(0.00000) 

First bank APARCH (1,1) SSTD 0.000000 
(0.00000) 

0.243226 
(0.51633) 

0.807157 
(0.00000) 

-0.05187 
(0.24772) 

0.0.33411 
(0.00000) 

GTB APARCH (1,1) SSTD 0.00867  
(0.31985) 

0.431883 
(0.00000) 

0.562379 
(0.00000) 

0.017485 
(0.75058) 

1.169177 
(0.00000) 

IBTC EGARCH (1,1) SGED -1.140530 
(0.00000) 

-0.094309 
(0.0000) 

0.849474 
(0.00000) 

0.863352 
(0.00000) 

 

Skye APARCH (1,1) SSTD 0.00000 
(0.510903) 

0.171890 
(0.0000) 

0.86647 
(0.00000) 

-0.10012 
(0.052659) 

0.56722 
(0.00000) 

STERLING GJR GARCH (1,1) SSTD 0.000000 
(1.00000) 

0.256889 
(0.00000) 

0.711117 
(0.00000) 

0.044956 
(0.099296) 

 

UBA APARCH (1,1) SSTD 0.000159 
(0.0000) 

0.210697 
(0.00000) 

0.835756 
(0.00000) 

0.037895 
(0.42695) 

0.40083 
(0.00000) 

UBN APARCH (1,1) SSTD 0.000000 
(0.661199) 

0.285737 
(0.00000) 

0.755127 
(0.00000) 

-0.053613 
(0.056467) 

0.516062 
(0.00000) 

Unity APARCH (1,1) SSTD 0.000000 
(1.00000) 

0.21464 
(0.00000) 

0.55518 
(0.00000) 

0.42423 
(0.005479) 

 

Wema APARCH (1,1) SSTD 0.000000 
(0.000235) 

0.221987 
(0.00000) 

0.808674 
(0.00000) 

-0.054683 
(0.090456) 

0.408423 
(0.00000) 

Zenith APARCH (1,1) SSTD 0.000000 
(0.96693) 

0.184142 
(0.00000) 

0.852851 
(0.00000) 

0.013136 
(0.71927) 

0.469244 
(0.00000) 

Table 4: Estimates of Parameter and Fitness of GARCH (1, 1) and Its Extensions Considered  
Based on Daily Stock Returns from Skewed Distribution 

 

Banks ADF Test 
Statistic 

Probability 
Values 

Comment ARCH test 
F-statistic 

Probability Values  
(F-Statistic) 

Access -48.5722 0.0001 Stationary 550.2915 0.000 
ETI -47.17395 0.0001 Stationary 829.25 0.000 

FCMB -52.64352 0.0001 Stationary 84.6764 0.000 
Fidelity -59.06472 0.0001 Stationary 828.9232 0.000 

First bank -34.25112 0.0000 Stationary 196.4195 0.000 
Guaranty -54.62437 0.0001 Stationary 244.8114 0.000 

IBTC -46.49839 0.0001 Stationary 752.76 0.000 
Skye -20.56096 0.0000 Stationary 125.4944 0.000 

Sterling -58.51137 0.0001 Stationary 858.0687 0.000 
UBA -52.84849 0.0000 Stationary 428.0211 0.000 
UBN -29.54142 0.0000 Stationary 125.68 0.000 
Unity -58.01691 0.0001 Stationary 799.25 0.000 
Wema -38.70508 0.0000 Stationary 871.407 0.000 
Zenith -37.89025 0.0000 Stationary 12.84715 0.0003 

http://www.ijird.com


 www.ijird.com                                                                                                                      July, 2022                                                                                                  Vol 11 Issue 7 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT               DOI No. : 10.24940/ijird/2022/v11/i7/JUL22022                       Page 73 
 

 
S/N 

 
Banks 

Parameters 
 ૛࣌ ࣌ ࣐ ࣆ

Mean SD Mean SD Mean SD Mean SD 
1 Access -19.00 0.078 0.90 0.02 24.000 4.243 580.00 18.00 
2 FCMB -28.00 0.084 0.92 0.02 30.000 7.348 870.00 54.00 
3 Fidelity -24.00 0.078 0.99 0.02 28.000 7.211 810.00 52.00 
4 ETI -18.00 0.061 0.90 0.02 23.000 3.873 530.00 15.00 
5 First bank -18.00 0.070 0.87 0.02 22.000 3.873 490.00 15.00 
6 GTBank -9.77 0.009 0.90 0.02 0.817 0.300 0.670 0.09 
7 Skye -24.00 0.049 0.99 0.02 26.000 7.071 680.00 50.00 
8 Stanbic IBTC -41.00 0.100 0.92 0.02 32.000 8.185 1000.0 67.00 
9 Sterling -28.00 0.094 0.98 0.02 30.000 7.810 890.00 61.00 

10 UBA -18.00 0.066 0.90 0.02 24.000 4.796 570.00 23.00 
11 UBN -30.00 0.110 0.92 0.01 29.000 8.185 830.00 67.00 
12 Unity -40.00 0.140 0.91 0.01 29.000 12.247 830.00 150.00 
13 Wema -39.00 0.140 0.91 0.01 29.000 10.954 850.00 120.00 
14 Zenith -18.00 0.061 0.98 0.02 23.000 3.873 530.00 15.00 

Table 5: Summary of the Estimates of the Stochastic Volatility (SV) Model for the Bank Stocks 
 

Ba
nk

 

M
od

el
s 

in
no

va
ti

on
 

Re
su

lt
s 

ba
se

d 
on

 
th

e 
be

st
 G

AR
CH

 
m

od
el

 fa
m

ily
 

RM
SE

 b
as

ed
 o

n 
St

oc
ha

st
ic

 v
ol

at
ili

ty
 

D
iff

er
en

ce
 (%

) 

Pr
ef

er
re

d 
M

od
el

 

   MSE RMSE MSE RMSE MSE RMSE  
ACCESS 
BANK 

APARCH 
(1,1) 

SSTD 1.329E-07 0.0003646 1.533E-07 0.0003916 -3.32 -6.9 APARCH 
(1,1) 

ECOBANK EGARCH 
(1,1) 

SGED 4.631E-07 0.0006805 4.518E-07 0.0006722 2.49 1.24 SV 

FCMB EGARCH 
(1,1) 

SGED 2.812E-07 0.0005303 2.515E-07 0.0005015 11.81 5.74 SV 

FIDELITY APARCH 
(1,1) 

SSTD 3.57E-07 0.0005975 3.551E-07 0.0005959 0.55 0.27 SV 

FIRST 
BANK 

APARCH 
(1,1) 

SSTD 4.668E-07 0.0006832 3.479E-07 0.0005899 34.16 15.83 SV 

GTB APARCH 
(1,1) 

SSTD 4.403E-07 0.0006636 4.323E-07 0.0006575 1.85 0.92 SV 

STANBIC 
IBTC 

EGARCH 
(1,1) 

SGED 7.445E-07 0.0008628 7.444E-07 0.0008628 0.01 0.01 SV 

SKYE APARCH 
(1,1) 

SSTD 3.692E-07 0.0006077 3.882E-07 0.000623 -4.8 -2.47 APARCH 
(1,1) 

STERLING GJRGARCH 
(1,1) 

SSTD 3.389E-07 0.0005821 3.382E-07 0.0005816 0.19 0.1 SV 

UBA APARCH 
(1,1) 

SSTD 4.071E-07 0.0006381 4.071E-07 0.0006381 0 0 SV 

UNION APARCH 
(1,1) 

SSTD 1.621E-07 0.0004026 1.617E-07 0.0004021 0.23 0.12 SV 

UNITY APARCH 
(1,1) 

SSTD 9.413E-07 0.0009702 9.423E-07 0.0009707 -0.1 -0.05 APARCH 
(1,1) 

WEMA APARCH 
(1,1) 

SSTD 4.789E-07 0.000692 4.789E-07 0.000692 0 0 SV 

ZENITH APARCH 
(1,1) 

SSTD 5.419E-07 0.0007362 5.413E-07 0.0007357 0.12 0.06 SV 

Table 6: Comparison of the Performance of GARCH Model Family with Stochastic Volatility Models Using MSE and RMSE 
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