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1. Introduction 

 Regression analysis is a statistical method that takes a set of data points and creates a model that can then be used 

to better understand the relationship between the variables or make predictions about future results. Regression was 

published by Legendre in 1805 and by Guass in 1809. The term ‘regression’ was coined by Francis Galton in the nineteenth 

century to describe a biological phenomenon. Regression analysis is a statistical technique for investigating and modelling 

the relationship between variables. Applications of regression are numerous and occur in almost every field, including 

engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social 

sciences. In fact, regression analysis may be the most widely used statistical technique.  

 The most popular method of fitting a regression model is least square method. The least squares method is a form 

of mathematical regression analysis that finds the line of best fit for a dataset, providing a visual demonstration of the 

relationship between the data points. Each point of data is representative of the relationship between a known 

independent variable and an unknown dependent variable, Douglas et al (2012).  

 Suppose the data consists of n observations ��� , ������
	 . Each observation includes a scalar response yi and a vector 

of p predictors (or regressors) �� .  

� = ��

�β+�� , 

where β is a p×1 vector of unknown parameters;��′� are unobserved scalar random variables (errors) which account for 

the discrepancy between the actually observed responses 
�  and the ‘predicted outcomes’��
�β; and T denotes matrix 

transpose, so that ��β is the dot product between the vectors x and β.  

 One of the basic assumptions in the application of the ordinary least squares method is that the error terms have 

constant variance (homogeneity of variance). Several cases arise in practice which violates this assumption, that is, a 

situation of heteroscedasticity which has serious consequence for the ordinary least squares estimator, thus the amount 

and reliability of the information about the value of the dependent variable for each level of the independent variables may 

differ. As a result, the Ordinary Least Squares estimator can no longer be Best Linear Unbiased Estimate (BLUE). 

 This work examines the effect of bootstrapping in working with heteroscedasticity. Bootstrapping is a re-sampling 

method that uses the original data to estimate a parameter or estimate the standard error of an estimate (Chernick 1999). 
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The bootstrap was introduced in 1979 by Bradley Efron at Stanford University. Efron first gave an extended account of the 

term in An Introduction to the Bootstrap with Efron and R.J.Tibshirani (1993) where theyexplained, that the use of the 

term‘bootstrap’was derived from the phase to pull oneself up by one’s own bootstrap. To bootstrap means to make use of 

existing resources to raise oneself toa new situationby makinguseofwhatisalready present. The simplest bootstrap method 

involves taking the original data set of n size, and obtaining a sampling from the sample to form a new sample (called a 

'resample' or bootstrap sample) that is also of size n. The bootstrap sample is taken from the original by sampling with 

replacement. This process is repeated a large number of times (typically 1,000 to 10,000 times), and for each of these 

bootstrap samples, the mean is computed which is called bootstrap estimates. 

2. Literature Review  

 Guan (2003) proved that bootstrapping is an alternative to obtain standard errors forestimated parameters, 

(when he compared results from Monte Carlo simulations with thosefrom parametric models) bootstrapped standard 

errors tend to be more conservatives than theparametric estimated coefficients. He concluded by stating that the number 

of repetitions andsample size both play important roles in the bootstrap method. 

 Obiora-Iluonu et al (2016) compared the linear discriminant method with proposed bootstrapmethod to identify 

which of the method performs better based on their error rate, reportedthat the bootstrap methods produced smaller 

error rate indicating that the proposed bootstrapalgorithm yield a better reduced error rate. 

Wang et al (2006) discussed how bootstrapping is used to approximate the standard error ofcertain estimators that were 

then used to create a particular linear regression model. 

 According to Karlis (2004), the bootstrap standard errors of the TL and OL coefficients aresubstantially larger 

than the estimated asymptotic OLS standard errors, because of theinadequacy of the bootstrap in small samples. The 

confidence intervals based on the bootstrapstandard errors are very similar to the percentile intervals of the TL and OL 

coefficients.However, the confidence intervals based on the OLS standard errors are quite different frompercentiles and 

confidence intervals based on the bootstrap standard errors. 

 

3. Materials and Methods 

 The Bootstrap Two-Step Least Square (BTSLS) is proposed. This procedure involves bootstrapping the already 

existing Two-Step Least Square. This method was compared with other existing methods; Ordinary Least Squares (OLS), 

Weighted Least Squares (WLS), Two Step Least Squares (TSLS), Bootstrap Weighted Least Squares (BWLS) 

 

3.1. Bootstrap Two-Step Least Square (BTSLS) 
This method involves adding a bootstrap smoothing to the two-step least squares. 

Let �ᵢ =	(�ᵢ	, � ji )′
 be the � sample size for the resampling, Where

( )ynyyYi ,...,,
21

= ′
 is a column vector of 

dependent variable and 
( )xjnxxX jjiji ,...,,

2
= ′

is the matrix of dimension n x p for the independent variable where
 

nikj ,...,2,1.,...,2,1 ==  

1. Draw a sample	(��
(�)��

(�), … , �	
(�)) with replacement from the original sample, with 

�	

	
 probability of sampling 

each�� , and label each element as �ᵢ
(�) = (�ᵢ

(�), �ϳᵢ
(�)) 

2. On each bootstrap sample, perform two-step least square use in section 3.4 and record your regression 

coefficients. 

3. Find the average of the all the bootstrap estimates of each coefficient, which is bootstrap estimate for the BTSLS 

( ) ( ) ( )BTSLS

b

BTSLSBTSLS βββ ˆ1000/ˆˆ
1000

1

== ∑
=

 

 Data will be simulated using the R statistical package. The sample size will be varied as 25, 50, 100. The severity of 

heteroscedasticity will be varied as low, high and very high. The Root Mean Square Error (RMSE) of the regression 

coefficient and the Euclidean norm will be used to measure the accuracy across all coefficients. 

 

3.2. Root Mean Square Error (RMSE) 
 The root mean square error measures the accuracy of the methods in estimating the slope parameter. It is a 

function of both the bias and the variance. The RMSE is given by; 

���� = (� !("�) − "$ ��)
%
& 

3.3. Euclidean Norm (Enorm) 
Enorm is the distance between coordinators 

'= ('₁‚ '₂‚………‚ '	) ∈ �	 by 

‖'‖ = )'₁² + '₂² +⋯+ '	² 

' is called a point on a vector and '₁'₂……'	 are called the coordinates of '. � is called the dimension of space, � (real 

numbers).  
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Methods Coefficients RMSE ENORM 

OLS b₀ = 1.18 b₁ =5.81 b₂ = 7.01 0.87 0.94 0.01 1.29 

 b₀ = 2.26 b₁ = 4.88 b₂ = 7.00 0.89 0.86 0.01 1.23 

 b₀ = 2.33 b₁ = 4.85 b₂ = 7.00 0.48 0.46 0.00 0.66 

WLS b₀ = 1.23 b₁ = 5.81 b₂ =7.01 0.90 0.97 0.01 1.32 

 b₀ = 2.26 b₁ = 4.88 b₂ = 7.00 0.89 0.86 0.01 1.24 

 b₀ = 2.31 b₁ = 4.84 b₂ = 7.00 0.47 0.45 0.00 0.66 

BWLS b₀ = 1.23 b₁ = 5.78 b₂ = 7.01 0.83 0.87 0.01 1.20 

 b₀ = 2.17 b₁ = 4.99 b₂ = 7.00 0.78 0.78 0.01 1.10 

 b₀ = 2.38 b₁ = 4.84 b₂ = 6.99 0.42 0.42 0.00 0.60 

TSWLS b₀ = 0.86 b₁ = 5.93 b₂ = 7.01 1.09 0.91 0.04 1.42 

 b₀ = 2.00 b₁ = 5.19 b₂ = 7.00 0.38 0.51 0.00 0.64 

 b₀ = 1.99 b₁ = 5.05 b₂ = 7.00 0.17 0.24 0.00 0.31 

BTSLS b₀ =1.04 b₁ = 6.02 b₂ = 7.00 0.53 0.60 0.01 0.80 

 b₀ = 2.03 b₁ = 5.13 b₂ = 6.99 0.32 0.40 0.00 0.51 

 b₀ = 2.01 b₁ = 4.97 b₂ = 7.00 0.16 0.21 0.00 0.27 

Table 1: Results for Sample Size 25, 50, 100 (Level of Heteroscedasticity Is Low) 
 

 When the sample size is 25, 50 and 100 with low heteroscedasticity, the BTSLS outperformed the other methods 

with the least ENORM and smallest RMSE. 

 

Methods Coefficients RMSE ENORM 

OLS b₀ = 4.21 b₁ = 3.70 b₂ = 6.99 1.25 1.51 1.40 2.41 

 b₀ = 3.76 b₁ = 3.66 b₂ = 7.00 1.23 0.97 0.94 1.83 

 b₀ = 3.35 b₁ = 4.10 b₂ = 4.10 1.23 0.97 0.94 1.83 

WLS b₀ = 3.51 b₁ = 3.95 b₂ = 6.99 1.22 1.55 1.40 2.42 

 b₀ = 3.78 b₁ = 3.78 b₂ = 7.00 1.84 1.48 0.91 2.53 

 b₀ = 3.44 b₁ = 4.04 b₂ = 6.99 1.84 1.48 0.91 2.53 

BWLS b₀ = 3.72 b₁ = 4.39 b₂ = 6.99 1.17 1.44 1.27 2.25 

 b₀ = 3.59 b₁ = 3.83 b₂ =7.00 1.11 0.90 0.85 1.67 

 b₀ = 3.26 b₁ = 4.14 b₂ = 6.99 1.11 0.90 0.85 1.67 

TSWLS b₀ = 2.15 b₁ = 5.26 b₂ = 6.99 1.48 1.69 1.55 2.73 

 b₀ = 1.99 b₁ = 4.68 b₂ = 6.99 0.46 1.63 0.93 1.93 

 b₀ = 2.20 b₁ = 4.51 b₂ = 6.99 0.46 1.63 0.93 1.93 

BTSLS b₀ = 1.19 b₁ = 6.15 b₂ = 7.09 0.47 0.91 0.73 1.26 

 b₀ = 1.43 b₁ = 5.16 b₂ = 7.00 0.28 0.47 0.40 0.69 

 b₀ = 2.17 b₁ = 4.55 b₂ = 7.00 0.28 0.47 0.40 0.69 

Table2: Results for Sample Size 25, 50, and 100 (Level of Heteroscedasticity Is High) 
 

 When the sample size is 25, 50 and 100 with high heteroscedasticity, the BTSLS outperformed the other methods 

with the least ENORM and smallest RMSE. 

 

Methods Coefficients RMSE ENORM 

OLS b₀ =−1520.61 b₁ = 870.26 b₂ = 32.47 79.5 4 128.48 63.68 163.99 

 b₀ =296.84 b₁ =−267.49 b₂ = 6.88 79.54 128.48 63.68 163.99 

 b₀ =221.31 b₁ =−160.28 b₂ = 6.11 15.40 34.06 17.66 41.34 

WLS b₀ =−1511.41 b₁ = 866.59 b₂ = 32.28 29.78 24.47 65.35 75.87 

 b₀ = 233.42 b₁ =−229.16 b₂ = 6.79 29.78 24.47 65.35 75.87 

 b₀ = 208.39 b₁ =−164.18 b₂ = 6.43 24.15 33.98 19.55 46.05 

BWLS b₀ =−1419.47 b₁ = 792.94 b₂ = 31.90 64.45 106.57 58.12 137.44 

 b₀ = 260.92 b₁ =−240.46 b₂ = 6.88 64.45 106.57 58.12 137.44 

 b₀ = 202.80 b₁ =−145.23 b₂ = 5.99 10.43 24.51 14.07 30.13 

TSWLS b₀ =	−12.50 b₁ = 14.61 b₂ = 7.22 6.96 11.09 3.84 13.65 

 b₀ = 3.06 b₁ = 3.58 b₂ = 6.99 6.96 11.09 3.84 13.65 

 b₀ = 3.61 b₁ = 2.90 b₂ = 6.99 8.40 43.10 31.05 53.78 

BTSLS b₀ =−246.02 b₁ = 162.93 b₂ = 386.49 2.66 5.58 4.77 7.8 

 b₀ = 4.56 b₁ = 1.70 b₂ = 7.00 2.66 5.58 4.77 7.8 

 b₀ = 4.36 b₁ = 1.84 b₂ = 7.00 0.63 3.08 1.37 3.43 

Table3: Results for Sample Size 25, 50, and 100 (Level of Heteroscedasticity Is Very High) 
 
 When the sample size is 25, 50 and 100 with low heteroscedasticity, the BTSLS outperformed the other methods 

with the least ENORM and smallest RMSE. 
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Methods Models RMSE 

OLS � = 4364.726	 − 4.296046�� + 2.599252	�� 493.3117 

WLS � = 4647.777 − 5.251522	�� + 2.641275	�� 493.7551 

BWLS � = 4332.571 − 4.235595	�� + 2.61899	�� 493.3741 

TSLS � = 1207.564	 + 4.864112	�� + 3.023242	�� 532.0568 

BTSLS � = 2279.356 + 1.183883�� + 3.188121�� 467.6002 

Table4: Results for the Application of the Methods on the Real Data Set 
 
 After the application of the methods to the real data, the results correspond to the results from the simulations in 

the sense that the bootstrap two- step produced the least RMSE than any other method in the presence of 

heteroscedasticity. 

 

4. Conclusion 

 Based on the summary of findings from the simulations and the real-life data analysis, it can be concluded that the 

BTSLS method is an improved method for performing regression analysis in the presence of heteroscedasticity when the 

sample size is relatively small and large.  
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