
   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 18 
 

 

 

Addressing Name Node Scalability Issue in  
Hadoop Distributed File System using Cache Approach 

 
 

 

 

 

 

 

 

 

 

 

1. Introduction 
In the information age of today, there is a growing disparity between the amount of data being generated and the ability to process and 
analyze this data.  Database management systems are designed to manage such large amount of data. But the data being generated 
now a day from various sources such as social network, semantic Web, satellites, surveillance systems, streaming data and 
bioinformatics network is humongous in amount. Moreover, these datasets are highly unstructured and thus it is being very difficult to 
store and handle this data. These aspects of the datasets have made the existing database management systems (DBMS) a bit 
inadequate and inefficient to be deployed for management of the data being generated. This led to the birth of new database 
management systems which not only are capable but also are very much efficient in storing, querying, processing, analyzing and 
making the data useful in a better yet convenient way. Apache Hadoop is one such DBMS which provides a distributed processing of 
large data sets across clusters of computing. It is a distributed, highly scalable and fault tolerant in nature system. 
Hadoop was first developed as a Big Data processing system in 2006 at Yahoo! The idea is based on Google's MapReduce, which was 
first published by Google based on their proprietary MapReduce implementation. In the past few years, Hadoop has become a widely 
used platform and runtime environment for the deployment of Big Data applications [3][5]. The core of hadoop includes file system, 
processing and computation resources and also it provides the basic services for building a cloud computing environment with 
commodity hardware. Hadoop provides a distributed file system and a framework for the analysis and transformation of very large 
data sets using the MapReduce paradigm which is the computation component of hadoop.  A Hadoop cluster scales computation 
capacity, storage capacity and IO bandwidth by simply adding commodity servers. Hadoop Distributed File System (HDFS) is the file 
system component of Hadoop where the data is stored [13]. 
HDFS has master/slave architecture. An HDFS cluster consists of a single NameNode, a master server that manages the file system 
namespace and regulates access to files by clients. In addition, there are a number of DataNodes, usually one per node in the cluster, 
which manage storage attached to the nodes that they run on. The NameNode keeps a reference to every file and block in the file 
system in memory, which means that on very large clusters with many files, memory becomes the limiting factor for scaling [7]. Thus 
when a node memory is full it becomes difficult to just add another node in the cluster for further storage needs as the NameNode will 

    ISSN 2278 – 0211 (Online) 

Chetan Agrawal 
Department of Information Technology, Maharashtra Institute of Technology, Pune, India 

Pooja Yedale 
Department of Information Technology, Maharashtra Institute of Technology, Pune, India 

Devesh Maru 
Department of Information Technology, Maharashtra Institute of Technology, Pune, India 

Pranav Gadekar 
Department of Information Technology, Maharashtra Institute of Technology, Pune, India 

 

Abstract:  
Hadoop is a distributed batch processing infrastructure which is currently being used for big data management. At the 
foundation of Hadoop lies Hadoop Distributed File System (HDFS). HDFS presents a client-server architecture comprised of a 
NameNode and many DataNodes. The NameNode stores the metadata for the DataNodes and DataNode stores application data. 
The NameNode holds file system metadata in memory, and thus the limit to the number of files in a file system is governed by the 
amount of memory on the NameNode. Thus when the memory on NameNode is full there is no further chance of increasing the 
cluster capacity. In this paper we have used the concept of cache memory for handling the issue of NameNode scalability. 
 
Keywords: Hadoop, NameNode, DataNode, HDFS, Cache 



   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 19 
 

not be able to handle this extra node and file system metadata that will be generated from it. This raises the NameNode scalability 
issue. 
The goal of this paper is to provide a solution to reduce the use of NameNode memory space so that the problem of NameNode 
memory getting full which ultimately results in hindering the scalability of cluster will be delayed. 
 
2. Literature Survey 
The ever growing technology has resulted in the need for storing and processing excessively large amounts of data. The current volume 
of data is enormous and is expected to replicate over 650 times by end the year 2014, out of which, 85% would be unstructured. This is 
known as the ‘Big Data problem’. Apache Hadoop is an open source project at Apache Software Foundation being built and used by a 
global community of contributors and users. Hadoop is a distributed batch processing infrastructure which is currently being used for 
big data management [3]. 
Hadoop is designed to be parallel and resilient. It redefines the way that data is managed and processed by leveraging the power of 
computing resources composed of commodity hardware [5]. And it can automatically recover from failures. 
 
2.1. Hadoop Architecture 
The basic hadoop architecture consists of two primary components viz. 1. Hadoop Distributed File System (HDFS) and 2. MapReduce 
 

 
Figure 1: Hadoop architecture 

 
2.1.1. Hadoop Distributed File System (HDFS layer) 
Hadoop Distributed File System is a fault-tolerant distributed file system designed to run on "off-the-shelf" hardware. It has been 
optimized for streaming reads on large files whereas I/O throughput is favored over low latency. In addition, HDFS uses a simple model 
for data consistency where files can only be written to once [10]. HDFS assumes disk failure as an eventuality and uses a concept called 
block replication to replicate data across nodes in the cluster. HDFS uses a much larger block size when compared to desktop files 
systems. For example, the default block size for HDFS is 64 MB. Once a file has been placed into HDFS, the file is divided into one or 
more data blocks and is distributed to nodes in the cluster. In addition, copies of the data blocks are made, which again are distributed to 
nodes in the cluster to ensure high data availability in case of a disk failure. An HDFS cluster has two types of nodes operating in a 
master-worker pattern: a NameNode (the master) and a number of DataNodes (workers). 
 
2.1.1.1. Name Node 
The NameNode manages the filesystem namespace. It maintains the filesystem tree and the metadata for all the files and directories in 
the tree. This information is stored persistently on the local disk in the form of two files: the namespace image and the edit log [2]. The 
NameNode also knows the DataNodes on which all the blocks for a given file are located; however, it does not store block locations 
persistently, because this information is reconstructed from DataNodes when the system starts. A client accesses the file system on 
behalf of the user by communicating with the NameNode and DataNodes. 
 
2.1.1.2. Data Nodes 
DataNodes are the workers of the file system. DataNode performs creation, deletion and copy of block under the NameNode's 
command. They store and retrieve blocks when they are told to (by clients or the NameNode), and they report back to the NameNode 
periodically with lists of blocks that they are storing. Each block replica on a DataNode is represented by two files in the local hosts 
native file system [2]. The first file contains the data itself and the second file is blocks metadata including checksums for the block data 
and the blocks generation stamp. 
 



   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 20 
 

2.1.2. Map Reduce 
MapReduce is a programming model for data processing. Hadoop can run MapReduce programs written in various languages. A 
MapReduce program is composed of a Map() procedure that performs filtering and a Reduce() procedure that performs a summary 
operation [8 ]. MapReduce works by breaking the processing into two phases: the map phase and the reduce phase. Each phase has key-
value pairs as input and output, the types of which may be chosen by the programmer. The programmer also specifies two functions: the 
map function and the reduce function. 
Here the application is divided into many small fragments of work, each of which can execute or re-execute on any node in the cluster. 
An important characteristic of Hadoop is the partitioning of data and computation across many (thousands) of hosts, and executing 
application computations in parallel close to their data [1] by using MapReduce paradigm. 
In the nutshell in a typical MapReduce job, multiple map tasks on slave nodes are executed in parallel, generating results buffered on 
local machines. Once some or all of the map tasks have finished, the shuffle process begins, which aggregates the map task outputs by 
sorting and combining key-value pairs based on keys. Then, the shuffled data partitions are copied to reducer machine(s), most 
commonly, over the network. Then, reduce tasks will run on the shuffled data and generate final (or intermediate, if multiple 
consecutive MapReduce jobs are pipelined) results. When a job finishes, final results will reside in multiple files, depending on the 
number of reducers used in the job. 
 
2.2. Name Node memory management 
The name node stores its filesystem metadata on two important files viz. fsimage and edits. The fsimage contains a complete snapshot of 
the filesystem metadata whereas edits contains only incremental modifications made to the metadata [hadoop ops]. On namenode 
startup the fsimage file is loaded into RAM and any changes into edits are replayed, bringing the in-memory filesystem up to date. 
 
2.3. Hadoop and Hadoop Ecosystem 
Although Hadoop is best known for MapReduce and its distributed file system (HDFS, renamed from NDFS), the term is also used for 
a family of related projects that fall under the umbrella of infrastructure for distributed computing and large-scale data processing. 
 

 
Figure 2: Hadoop Ecosystem 

 
A typical Hadoop-based Big Data platform includes the Hadoop Distributed File System (HDFS), the parallel computing framework 
(MapReduce), common utilities, a column-oriented data storage table (HBase), high-level data management systems (Pig and Hive), a 
Big Data analytics library (Mahout), a distributed coordination system (ZooKeeper), a workflow management module (Oozie), data 
transfer modules such as Sqoop, data aggregation modules such as Flume, and data serialization modules such as Avro [10]. 
 
2.4. Problem with Existing System 
The NameNode server in the hadoop cluster keeps the track of filesystem metadata, it keeps a track of how your files are broken down 
into file blocks, which nodes store those blocks, and the overall health of the distributed filesystem. It maintains a catalog of all block 
location in the cluster which makes the NameNode the bookkeeper of HDFS. 
Since the NameNode is a single container of the file system metadata, it naturally becomes a limiting factor for file system growth. In 
order to make metadata operations fast, the namenode loads the whole namespace into its memory, and therefore the size of the 
namespace is limited by the amount of RAM available to the NameNode [9]. Thus when the memory available to the NameNode is full 
there are no chances for the cluster to grow limiting the number of active clients. Also a big HDFS installation with a NameNode 
operating in a large JVM where the memory space is almost full is vulnerable to frequent full garbage collections, which may take the 
NameNode out of service for several minutes [11]. Thus it is clear that memory available to the NameNode machine in a hadoop cluster 
dictates the size of cluster and ultimately the number of active clients using a hadoop based application. 
. 



   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 21 
 

3. Proposed Work 
 
3.1. The Basic Idea of Cache Memory 
A computer has a wide range of type, technology, performance and cost when it comes to complex memory management. Also a 
computer memory has a hierarchy from Central Processing Unit (CPU) registers to magnetic taped. Cache is one such memory type 
which comes second in the hierarchy which is an expensive yet fast access data storage device. A cache in generic terms is an 
intermediate buffer memory used to reduce the average time to access data. The cache is a smaller, faster memory which stores copies 
of the data from frequently used main memory locations. Cache memories are used in modern, medium and high-speed CPUs to hold 
temporarily those portions of the contents of main memory which are currently in use. Information located in cache memory may be 
accessed in much less time than that located in main memory. Thus, a central processing unit (CPU) with a cache memory needs to 
spend far less time waiting for instructions and operands to be fetched and/or stored. The instance when the main memory has to be 
accessed is only when data to be fetched is not in the cache i.e. a cache fault. Such cases arise very less number of times compared to 
cache hit. 
 
3.2. Design Overview 
The basic concept of cache i.e. storing the frequently used data closer to the processor than the whole data and using it for faster 
operation can be applied in the NameNode memory management. Thus when the NameNode is operating in a heavy HDFS 
installation, the metadata records of frequently used data that is being used by most of the active clients can be kept in the NameNode 
memory space and the metadata records of least used data which sometimes can even be irrelevant can be kept at a different location 
and accessed as and when required. This way a lot of NameNode memory usage will be reduced which then can further be used to 
store more frequent data. Also with a less loaded HDFS NameNode the JVM garbage collection will be reduced which will avoid the 
problem of NameNode becoming irresponsive due to the excessive garbage collection. 
 
3.3. Architecture 
In this architecture, along with all the fundamental blocks of hadoop one more commodity-hardware is attached. This added hardware 
is a considerably fast access memory device. It acts as the secondary storage device where the least recently used metadata will be 
stored. The metadata stored on it will be referenced only when the request has been made to access the data which is not being used 
frequently. 
 

 
Figure 3 

 
3.3.1. Building Blocks of proposed architecture 
NameNode: The NameNode in the proposed architecture is same as that of it is in existing architecture except that it will not store the 
whole filesystem metadata. Instead the NameNode will store only those metadata records which are frequently and recently used. The 
NameNode will also implement a separation algorithm through which the least recently used metadata records will be separated out 
and will be stored on the secondary storage device. 
DataNodes: The DataNodes will be same as that of existing system. 
Threshold Value: A threshold value is the maximum amount of system memory space that the namenode can use to store the hadoop 
filesystem metadata. Memory usage reaching threshold value indicates that the system memory is about to be full and thus governs 
when the removal of metadata is to be carried out. We have installed hadoop on a small cluster consisting of three machines. One 
dedicated machine as NameNode and two machines as DataNodes. The machine running NameNode has system memory i.e. RAM of 
1GB available with it to load the hadoop metadata. 
Each metadata record requires approximately 600kiloBytes of memory. Thus 1GB of RAM will store approximately 1.8 million of 
metadata records. The threshold value for our implementation is the number of records the fsimage file contains as number of records 
directly indicates the memory requirements by NameNode. 



   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 22 
 

As the fsimage file keeps on filling, the algorithm maintains a count on the number of metadata records in this fsimgae file contains. 
Once the number of records reaches a count of 1.26 million, indicating the memory requirement is about 700MB the separation 
algorithm is triggered to reduce the memory usage. The separation module separates out some of the records from the fsimage file 
based on the separation policy thus reducing RAM required to store those metadata records 
Separation Algorithm: The separation algorithm will be used for moving the least recently used metadata from NameNode to 
secondary storage device. The separation algorithm takes into account two fields from the metadata records two decide whether or not 
to remove any metadata record. By default each metadata record keeps a track on last access time. We have added an extra field viz. 
count which indicated the frequency of use about each file into the cluster. Each time the access time is updated the count is increased 
by one indicating that the data/file represented by it is been used. Once triggered the separation algorithm works as follows: 

1. Initially a mean of count which is the frequency of use of a file is calculated. 
2. For each metadata record 
 First check the last access time, if it indicates that the file has been accessed recently, then the metadata record is not removed 

irrespective of whether the file is used more frequently. 
 If the access time indicates that the file is not been used for long time then the count i.e. the frequency of use of file is 

compared against the mean count that is calculated in the first step. 
 If the count field in the metadata record is greater than the mean, suggesting that the data is used more frequently though it 

was not used recently. This metadata record is not removed. 
 Rest of the metadata records are separated out and stored into another file viz. fsimage2. 
 This separation policy removes near about 30% of the metadata records from the fsimage file thus making space available for 

other purposes. 
Working: In the proposed architecture, a threshold value will be defined on the NameNode memory space. As and when this threshold 
value will be reached the separation algorithm will run so as to remove the metadata records that are not being used. Initially the 
namenode will keep storing the filesystem metadata as it comes until the predefined threshold is reached. Once the threshold will be 
reached the separation algorithm will come into play and remove some of the records based on the separation function. This separated 
data will be moved to secondary storage device. 
When the client performs a read operation the usual processing that is done by the NameNode to fetch metadata for requested file will 
be done and the client will be given back the file. The only difference will occur when the requested file is moved to the secondary 
storage as it was not recently used and the NameNode has reached threshold value. In this case the NameNode will not find the record 
in its memory and thus a request will be made to secondary device to fetch the metadata record and the metadata record will be 
removed from secondary device and will be loaded again on the RAM. 
 
4. Implementation 
Experimental Setup: Hadoop is deployed on three machines having Ubuntu 13.04 as linux version thus creating multimode cluster. One 
dedicated machine for NameNode and two for DataNodes. The NameNode stores the file system metadata into the file viz. fsimgae and 
loads it each time NameNode comes alive. The data set used is a collection of 1.8 million text files collected from the weather survey. 
Files are added to NameNode and are accessed randomly leaving some of files untouched so that their frequency and last access time 
does not change. Once the count of metadata in fsimage reaches 1.2 million, the separation algorithm gets initiated. The algorithm 
removes the not recently and not frequently used metadata and store it on secondary storage. Initially, 1.2 million files were added to the 
cluster using put command. As the metadata for these files consumes about 700MB of RAM on NameNode, as we put 700 MB as our 
threshold for NameNode memory usage so the separation gets triggered and each time the metadata count in fsimage reaches 1.2 
million i.e. 700 MB of NameNode memory usage the separation algorithm gets triggered and removes the not recently and frequently 
used data. 
Results: As some of the files were left untouched and other were accessed randomly, the separation module remove approx. 0.3 million 
files the first time and 0.25 million files for the second time and 0.28 million for the third time . This removal of the files has made 
available approx. 250 MB of RAM. Due to this free space, the hadoop does not become unresponsive. The free space aids in faster 
operation by hadoop NameNode as well as by local operating system. 
A new file to store the separated metadata is created and the metadata that is separated is written to it. Due to less RAM consumption by 
NameNode, it becoming unresponsive and the requirement of restarting the cluster is avoided. 



   www.ijird.com                                       September, 2014                                            Vol 3 Issue 9 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 23 
 

 
Figure 4 

 
5. Conclusion 
We have presented a way to reduce the NameNode memory consumption thus increasing the capacity of a hadoop cluster. By 
implementing the cache concept in HDFS the two issues with Hadoop viz. Namenode being irresponsive due to garbage collection and 
cluster scalability issue can be solved. This way the Hadoop cluster will not reach the stage where the NameNode becomes 
irresponsive due to excessive JVM garbage collection as the HDFS will not be heavily loaded. Also as the NameNode will only store 
relatively more frequently used data the operations carried on the cluster will be faster and more efficient. 
 
6. References 

1. J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, Google Research Publication, 
OSDI’04: 6th Symposium on Operating Systems Design and Implementation, pp. 137-149, 2004. 

2. K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop Distributed File System”, IEEE 26th Symposium on Mass 
Storage Systems and Technologies (MSST), Sunnyvale, California USA, vol. 10, pp. 1-10, 2010. 

3. T. White, “Hadoop: The Definitive Guide”, O’Reilly, Scbastopol, California, 2009. 
4. R. Buyya, J. Broberg, A. Goscinski, “Cloud Computing: Principles and Pradigms”, Wiley, 2011. 
5. C. Lam, “Hadoop in Action”, Manning, 2011. 
6. L. Jing-min, H. Guo-hui, “Research of Distributed Database System Based on  Hadoop”, IEEE International conference on 

Information Science and Engineering (ICISE), pp. 1417-1420, 2010. 
7. MapReduce, http://en.wikipedia.org/wiki/MapReduce 
8. Konstantin V. Shvachko “HDFS scalability: The limits to growth”. ; LOGIN: VOL.  35, NO. 2. 
9. Alex Holmes, “Hadoop in Practice”, Manning, 2011 
10. Konstantin V. Shvachko “Apache Hadoop: The Scalability Update”; login: JUNE 2011 Apache Hadoop. 
11. Kyong-Ha Lee, Yoon Joon, Lee, Hyunsik Choi, Yon Dohn Chung, Bongki Moon “Parallel Data Processing with 

MapReduce: A Survey”. 
12. Y. Pingle, V. Kohli, S. Kamat, N. Poladia, “Big Data Processing using Apache Hadoop in Cloud System”, National 

Conference on Emerging Trends in Engineering & Technology, pp. 475-479, 2012. 
13. Apache-Hadoop, http://Hadoop.apache.org 

 
 
 
 

 

 

 

 


