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1. Introduction 
Ramakotaiah and Anjaneyalu [1] introduced the notions of pseudo symmetric ideals in semigroups. Pseudo symmetric semigroups and 
exhibit some examples and some classes of pseudo symmetric semigroups .Krishna Murthy and Arul Dass [11] introduced the notions 
of pseudo symmetric   ideals in   semigroups.  Sarala, Anjaneyulu and   Madhusudhana Rao [21] introduce and made a study on 
pseudo symmetric ideals in ternary semigroups. 
 
2. Preliminaries 
DEFINITION 2.1: A ternary semigroup T is said to be a partially ordered ternary semigroup if T is a partially ordered set such 
that a b [a a1 a2] [b a1 a2],                    [a1 a   a2] [ a1 b  a2], [a1 a2   a] [ a1  a2 b] for all a, b, a1,a2  T. 
 
NOTE 2.2: A partially ordered ternary semigroup is also called as po ternary semigroup or ordered ternary semigroup. 
 
NOTATION 2.3: Let T be a po ternary semigroup and S be a non-empty subset of T.  If H is a non-empty subset of S, we denote 
{sS: s h  for some hH} by (H]T. 
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Abstract: 
 In this paper the terms pseudo symmetric ideals, semipseudo symmetric ideals of po ternary semigroups.  It is proved that every 
pseudo symmetric ideal of po ternary semigroup is a semipseudo symmetric ideal.  It is also proved that every semiprime ideal 
P minimal relative to containing a semipseudo symmetric ideal A of a po ternary semigroup is completely semiprime.  If  A is a 
semipseudo symmetric ideal of a po ternary semigroup T.  Then (1) A1= the intersection of all completely prime ideals of T 

containing A. 2)  1
1A  = the intersection of all minimal completely prime ideals of T containing A.  3) 11

1A = the minimal 

completely semiprime ideal of T relative to containing A.4) AxTxA n  :{2 for some odd natural number n}5)  3A = the 

intersection of all prime ideals of T containing A.6) 1
3A = the intersection of all minimal prime ideals of T containing A.7)  

11
3A = the minimal semiprime ideals of relative to containing A.8) AxTxA n  :{4  for some odd natural number n 

} are equivalent.  If A is an ideal in a po ternary semigroup then it is proved that (1) A is completely semiprime, A is semiprime 
and pseudo symmetric. A is semiprime and semipseudo symmetric are equivalent and (2) A is completely prime; A is prime and 
pseudo symmetric.  A is prime and semipseudo symmetric are also equivalent.  If M is maximal ideal of a po ternary semigroup 
T with TM 4 then it is proved that M is completely prime, M is completely semiprime, M is pseudo symmetric and M is 

semipseudo symmetric are equivalent. 
 
Key words:  pseudo symmetric, semipseudo symmetric, completely prime, prime, completely semiprime, semiprime. 
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NOTATION 2.4: Let T be a po ternary semigroup and S be a non-empty subset of T. If H is a non-empty subset of S, we denote 
{sS: h s  for some hH} by [H)T. 
 
DEFINITION 2.5:  Let T be a po ternary semigroup. A nonempty subset S of T is said to be a po ternary subsemigroup of T if i) 
abcS for all a ,b ,cS   ii) t T ; s StStS  ,   
 
NOTE 2.6: A non-empty subset S of a po ternary semigroup T is a po ternary subsemigroup of T if and only if i) SSS S ii) (S] =S. 
 
EXAMPLE 2.7: Let Z be the set of all intergers. Define multiplication on Z by                 [xyz] = min {x, y ,z} for all x ,y ,zZ.  Then 
Z is po ternary semigroup. Let Z- be the set of all negative integers. Then Z- is a po ternary subsemigroup of Z. 
 
EXAMPLE2.8: Let T=[0,1].Then T is a po ternary semigroup under the usual multiplication and usual order relation .Let S=[0, ]. 

Then S is a po ternary subsemigroup of T. 
 
DEFINITION 2.9:  A nonempty subset A of po ternary semigroup T is said to be a  po left ternary ideal or po left ideal of T if i) 
b,c T, a A  bca  A ii)  a A and t T such that    t  a  t A. 
 
NOTE 2.10:  A nonempty subset A of po ternary semigroup T is a po left ternary ideal  of T if and only if  i) TTA⊆ A  ii)(A] ⊆A. 
 
DEFINITION 2.11: A nonempty subset A of po ternary semigroup T is said to be a             po lateral ternary ideal or po lateral 
ideal of T if  i ) b ,c  T, a A  bac  A ii)  a  A and  t T such that t  a  t A. 
 
NOTE 2.12: A nonempty subset A of po ternary semigroup T is a po lateral ternary ideal of T if and only if i) TAT⊆ A ii)(A] ⊆A. 
 
DEFINITION 2.13: A nonempty  subset A of po ternary semigroup T is said to be a po right ternary ideal or po right ideal of T if  
i) b ,c  T, a A abc  A ii)  a A and t T such that t  a  t A. 
 
NOTE 2.14: A nonempty subset A of po ternary semigroup T is a po right ternary ideal T if and only if i) ATT⊆ A ii) (A] ⊆A. 
 
DEFINITION 2.15: A non-empty subset  A of po ternary semigroup T is said to be  po   two sided ternary ideal or po two sided  
ideal of T if  i ) b ,c T, a A bca  A ,abc  A 
 ii) a  A and t  T such that t  a  t A. 
 
NOTE 2.16: A nonempty subset A of po ternary semigroup T is a po two sided ternary ideal of T if and only if i) TTA⊆ A; ATT⊆ A 
ii)(A] ⊆A. 
 
NOTE 2.17: A nonempty subset A of po ternary semigroup T is a po two sided ideal of T if and only if it is both a po left ideal and a 
po right ideal of T. 
 
DEFINITION 2.18: A nonempty subset A of po ternary semigroup T is said to be a 
 po  ternary ideal or po ideal of T if  i ) b ,c  T, a A bca  A, bac  A, abc  A  
ii)  a  A and  t T such that  t  a  t A. 
 
NOTE 2.19: A nonempty subset A of po ternary semigroup T is a po ideal of T if and only if   i) TTA⊆ A; ATT⊆ A, TAT⊆ A   ii)(A] 
⊆A. 
 
NOTE 2.20: A nonempty subset A of po ternary semigroup T is a po  ideal of T if and only if it is  a  left  po ideal, lateral po ideal, 
and  right po ideal of T. 
 
EXAMPLE 2.21: Let N be the set of all natural numbers. Define the ternary operation from 
N x N x N N as (a, b, c) = a.b.c where ‘. ‘ is usual multiplication and ordered relation  

  on N.  Then N is a po ternary semigroup and A =3N is a po ideal of the po ternary  
semigroup N. 
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DEFINITION 2.22: A po ternary semigroup T is said to be a commutative provided for all  
a,b,c  we have i) abc = bca= cab= bac=cba=acb   
ii) a A and t T such that  t  a  t A. 
 
DEFINITION 2.23: A po ternary semigroup T is said to be a quasi commutative  provided i) for each a,b,c  there  exist  natural 
number ‘n’ such that     
abc =  bnac = bca =  cnba = cab = ancb =acb.     
 
DEFINITION 2.24: An  element  a  of a po ternary semigroup T is said to be  a  left  identity of T provided  aat = t and t a for all 
t . 
 
NOTE 2.25: Left identity element a of a po ternary semigroup T is also called as a left unital element. 
 
DEFINITION 2.26: An element   a of a po ternary semigroup T is said to be a right identity of T provided   taa = t and t a for all 
t . 
 
NOTE 2.27: Right identity element a of a po ternary semigroup T is also called as  right  unital element. 
 
DEFINITION 2.28: An element a of a po ternary semigroup T is said to be a lateral  identity of T provided  ata = t and t a for all   
t  . 
 
NOTE 2.29: Lateral identity element a  of a po ternary semigroup T is also called as a lateral unital  element. 
 
DEFINITION 2.30: An element a of a po ternary semigroup T is said to be a two sided   identity of T provided aat = taa = t and t 

a for all   t  . 
 
NOTE 2.31: Two- sided identity element of a ternary semigroup T is also called as a 
 bi-unital element. 
 
DEFINITION 2.32: An element a of a po ternary semigroup T is said to be an identity  provided   aat = taa =ata= t and t a for 
all   t  . 
 
NOTE 2.33: An identity element of a po ternary semigroup T is also called as a unital element. 
 
NOTE 2.34: An element a of a po ternary semigroup T is said to be an identity of T then 
a   is  a left identity, lateral identity and  right identity of T. 
 
NOTATION 2.35: let T be a  po ternary semigroup. if T has an identity, Let  T 1 =T and if T does not have an identity, let  T I be the 
po ternary semigroup T  with an identity adjoined usually denoted by the symbol 1. 
 
Definition 2.36: An ideal A of a po ternary semigroup T is said to be a trivial ideal provide T\A is singleton. 
 
Definition 2.37: An ideal A of a po ternary semigroup T is said to be a completely prime ideal provided x ,y ,zT and xyzA 
implies either xA or yA or Az   
 
Definition 2.38:  An ideal A of a po ternary semigroup T is said to be a completely semiprime ideal provided xT, nx A for some 
odd natural number n >1 implies x   A. 
 
Definition 2.39: An ideal A of a po ternary semigroup T is said to be a prime ideal of T provided are x, y, z are  ideals of T and 

.AZAororYAXAXYZ   
 
Definition 2.40:  An ideal A of a po ternary semigroup T is said to be a semiprime ideal provided x is an ideal of T and 

AX n  implies AX  for some odd natural number n 
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Theorem 2.41: Let A be any pseudo symmetric ideal in a po ternary semigroup T and naaa ......,21    T where n is an odd natural 

number.  Then Aaaa n......21 if and only if Anaaa  ....21 . 
 
Corollary 2.42: Let A be a pseudo symmetric ideal in a po ternary semigroup T, then for any odd natural number n, Ana  if and 

only if Ana   
 
Theorem 2.43: Let A be a prime ideal of a po ternary semigroup T.  If A is completely semiprime ideal of T then A is compleltely 
prime. 
 
Theorem 2.44: Every completely semiprime ideal of a po ternary semigroup is semiprime. 
 

Theorem 2.45: An ideal A of a po ternary semigroup T is semiprime if and only if X is an ideal of T, AX 3 implies AX    
 
Theorem 2.46: Every completely prime ideal of a po ternary semigroup is prime. 
 
Theorem 2.47: Every prime ideal of a po ternary semigroup is semiprime. 
 
Notation 2.48: If A is an ideal of a po ternary semigroup T, then we associate the following four type of sets. 

1A The intersection of all completely prime ideals of T containing A. 

2A  {x  T : x n A  for some odd natural number n} 

3A The intersection of all prime ideals of T containing A 

4A { AxTx n  :  for some odd natural number n} 

 
Theorem 2.49: If A is an ideal of a po ternary semigroup T, then ,234 AAAAA   

 
Corollary 2.50: If an ideal A of a po ternary semigroup T is completely semiprime then    x,y,z, ,T  

AzyxAxyz  . 
 
3 Semipseudo Symmetric Ideals 
DEFINITION 3.1:  An ideal A in of a po ternary semigroup T is said to be a semipseudo symmetric provided  for any odd natural 
numbers n , Tx , A >x< n Ax n  
 
DEFINITION 3.2: An ideal A of a Po ternary semigroup T is said to be a Pseudo symmetric provided x ,y , z T; Axyz implies 
xsytz A  for all s , t .T  
 
THEOREM 3.3: Every Pseudo symmetric ideal of a po ternary semigroup is a semipseudo symmetric ideal. 
Proof: Let A be a pseudo symmetric ideal of a po ternary semigroup T. 
Let x T  and Ax n   for some odd natural numbers  n. 

By corollary 2.42 x AnxAn     
Therefore A is a semipseudo symmetric ideal. 
 
Note 3.4: The converse of theorem 3.3 is not true i.e a semipseudo symmetric ideal of a po ternary semigroup need not be a pseudo 
symmetric ideal. 
 
Example 3.5: Let T be a free po ternary semigroup over the alphabet {a ,b ,c ,d ,e}.  Let A = < abc>< bca> <çab>. Since 
abc A and adbec A , A is not pseudo symmetric. 

Suppose Anx  for some odd natural numbers n.  Now the word ‘x’ contains abc or bcause  or cab and hence <x> An  . 

Therefore Anx  for some odd natural number ‘n’. nx  A .  Therefore A is a semipseudo symmetric ideal. 



   www.ijird.com                                          April, 2014                                             Vol 3 Issue 4 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 390 
 

THEOREM 3.6: Every semiprime ideal P minimal relative to containing a semipseudo symmetric ideal A in a po ternary semigroup 
T is completely semiprime. 
Proof: Write PTnxS n \:{  for any odd natural numbers n }. 

First we show that SA If SA , then there exist an element PTx \  such that Anx  where n is an odd natural 

number.  Since A is a semipesudo symmetric ideal, pxpxpAnx n  .  It is a contradiction thus 
SA  consider the set BB:{ is an ideal in T containing A such that }.SB Since A ,  is nonempty.  Now   

is a poset under set inclusion and satisfies the hypothesis of Zorn’s lemma.  Thus by zorn’s lemma   contains a maximal element, 
say M. 

Suppose  3a M and Ma . Then  aM is an ideal containing  A.  Since M is maximal in  ,  we have (M   <a>) 
S . 

Then there exists PTx \ such that Sanx   for some odd natural number n. 

Therefore SMnxSMSanx  333 .  It is a contradiction.  Therefore M is a semiprime ideal containing A  
Now PSTMA  \ Since P is a minimal semiprime ideal relative to containing A.         We have .\ PSTM   Let 

PmxSx  ; suppose if possible px        

Now SmxSxPx  .  It is a contradiction.  Therefore Px  Hence P is a completely semiprime ideal.       
 
COROLLARY 3.7: Every prime ideal P in a po ternary semigroup T minimal relative to containing a semipseudo symmetric ideal A 
is completelyprime. 
Proof: Since every prime ideal is a semiprime ideal, by Theorem 3.6, we have P is a completely semiprime ideal and by Theorem 
2.43, P is a completelyprime ideal. 
 
COROLLARY 3.8: Every prime ideal minimal relative to containing a  pseudo symmetric ideals A is a po ternary semigroup T is 
completelyprime. 
Proof:  Let P be a prime ideal containing a pseudo symmetric ideal A of a po ternary semigroup T.  By theorem 3.3, every pseudo 
symmetric ideals is a semipseudo symmetric ideal, by corollary 3.7, P is a completelyprime ideal of T. 
 
THEOREM 3.9: If A is an ideal in a po ternary semigroup T, then the following are equivalent.  
1) A is completely semiprime 
2) A is semiprime and pseudo symmetric 
3) A is semiprime and semipseudo symmetric. 
Proof: (1) )2( : Suppose A is completely semiprime ideal of T By theorem 2.44, A is a semiprime ideals of T  Let x, y, z T  and 
xyz A  

  ,3)(;)()()()()(3 AyzxthereforeAxxyzxyzyzyzxyzxyzxyzx   
A is completely semiprime ideal Ayzx   

Similarly   ,3)(;)()()()()(3 AzxythereforeAxyxyzxyzzzxyzxyzxyzxy    
A is completely semiprimeideal Azxy  

If s,t 1T  then Aztyzxssytzxxsytxsytzxsytzxsytzxsytz  ])()([)()()()( 3  

(xsytz) A3 , A is completely semiprime ideal Axsytz  .  Therefore A is a pseudo symmetric ideal. 
(2) :)3( Suppose A is semiprime and pseudo symmetric .By theorem 3.3, A is a semipseudo symmetric ideal.  Hence A is a 
semiprime and semipseudo symmetric. 

(3) :)1( Suppose A is semiprime and semipseudo symmetric .Let AxTx  3, , Since A is semipseudo symmetric, 

AxAxTx  33, .  Since A is semiprime, by Theorem 2.45, AxAx  3 . Therefore A is completely 
semiprime. 
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DEFINITION 3.10:  An element a of a po ternary semigroup T is said to be semisimple provided ,3 aa  that is 

 aa 3  
 
DEFINITION 3.11:  A po ternary semigroup T is said to be a semisimple po ternary semigroup provided every element in T is 
semisimple. 
 
THEOREM 3.12: If A is an ideal of a semisimple po ternary semigroup T, then the following are equivalent 
1) A is completely semiprime 
2) A is pseudo symmetric 
3) A is semipseudo symmetric. 
Proof: (1) )2( : Suppose that A is completely semiprime.  By theorem 3.9, A is pseudo symmetric. 
 (2) )3( : Suppose that A is pseudo symmetric. By theorem 3.9, A is semipseudo symmetric 

 (3) )1( : Suppose that A is semipseudo symmetric. Let ,, 3 AxTx   Since A is semipseudo   

  symmetric  .33 AxAx   Since T is semisimple, x is a semisimple element,   

  therefore .3 Axx    Thus A is completely semiprime. 
 
 THEOREM 3.13: If A is an ideal of po ternary semigroup T, then the following are equivalent. 
1) A is completely semiprime 
2) A is prime and pseudo symmetric 
3) A is prime and semipseudo symmetric. 
Proof: (1) )2( : Suppose that A is completely prime. 
By theorem 2:46, A is prime Let x ,y ,zT and xyz A   

;Axyz A is completely prime TtsallforAxsytzAzorAyorAx  ,  
Therefore A is pseudo symmetric and prime. 
(2) :)3(  Suppose that A is prime and pseudo symmetric. 
 Since A is pseudo symmetric, by Theorem 3.9, A is semi pseudo symmetric 
(3) :)1( Suppose A is prime and semipseudo symmetric.   
Since A is prime by theorem 2.47, A is semiprime. 
 
Since A is semiprime and semipseudo symmetric, by theorem 3.9, A is completely semiprime.  Since A is prime and completely 
semiprime by theorem 2.43, A is completely prime. 
 
Theorem 3.14: Let A be a semipseudo symmetric ideal of a po ternary semigroup T.  Then the following are equivalent. 
1)  1A = The intersection of all completely prime ideals of T containing A. 

2) 1
1A = The intersection of all minimal completely prime ideals of T containing A 

3) 11
1A  = The minimal completely semiprime ideal of T relative to containing A. 

4) AxTxA n :{2  for some odd natural number n}. 

5) 3A The intersection of all prime ideals of T containing A. 

6) 1
3A = The intersection of all minimal prime ideals of T containing A. 

7) 11
3A = The minimal semiprime ideal of T relative to containing A. 

8) AxTxA n  :{4  for some odd natural number n} 
Proof: Since completely prime ideals containing A and minimal completely prime ideals containing A and minimal completely 
semiprime ideals relative to containing A are coincide, it follows that 11

1
1
11 AAA  .  Since prime ideals containing A and minimal 

prime ideals containing A and the minimal semiprime ideals relative to containing A are coincide, it follows that  11
3

1
33 AAA  .Since 

A is semipseudo symmetric ideal, we have 42 AA   .Now by theorem 3.6, we have 11
3

11
1 AA  .Therefore 

42
11
3

1
33

11
1

1
11 AAandAAAAAA   
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Hence the given conditions are equivalent. 
 
Theorem 3.15:  If M is a maximal ideal of a po ternary semigroup T with ,4 TM   then the following are equivalent. 
1) M is completely prime. 
2) M is completely semiprime. 
3) M is pseudo symmetric. 
4) M is semipseudo symmetric. 
Proof: (1)  (2). Suppose that M is completely prime. 
By theorem2.46, M  is completely semiprime.  
(2)  (3).Suppose that M  is completely semiprime ideal of the po ternary semigroup T.    
By theorem 3.9, M is pseudo symmetric. 
(3)  (4).Suppose that M  is pseudo symmetric.  By theorem 3.12, M is semipseudo  
symmetric. 
(4)  (1):Suppose that M  is semipseudo symmetric. 

By theorem 3.14, TMM  4 Since M is maximal ideal and ,4 TM   it implies that 4MM   

Let ,, 3 MxTx   Since M  is semipseudo symmetric, .3 Mx    Then MMx  4    
M is completely semiprime. 
Let x , y , z MxyzT  ; .  Since M is completely semiprime, by corollary 2.50  

MzyxMxyz   
 Suppose if possible MzMyMx  ,,  Then  zMyMUxMU ,, are ideals of T   
  and .,, TzMyMxM    Since M is maximal,  




zyx
zyxyzxxzyzMyxandyMzxxMzy ,;,;,,;,;,

 

   Now MxMxMxzyxMzyx  33  
 
   It is a contradiction.  Therefore either MzorMyorMx   
    M is completely prime. 
 
4. Conclusion 
Anjaneyulu .A initiated the study of pseudo symmetric ideals in semigroups. Madhusudhana Rao.D initiated the study of theory of   
ideals in   -semigroups. Sarala.Y initiated the study of theory of ideals in ternary semigroups and hence the study of ideals in 
semigroups,    semigroups and po     semigroups creates a platform for the pseudo symmetric ideals in po ternary semigroups. 
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