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Abstract:

In this paper the terms pseudo symmetric ideals, semipseudo symmetric ideals of po ternary semigroups. It is proved that every
pseudo symmetric ideal of po ternary semigroup is a semipseudo symmetric ideal. It is also proved that every semiprime ideal
P minimal relative to containing a semipseudo symmetric ideal A of a po ternary semigroup is completely semiprime. If Aisa
semipseudo symmetric ideal of a po ternary semigroup T. Then (1) A;- the intersection of all completely prime ideals of T

containing A. 2) All = the intersection of all minimal completely prime ideals of T containing A. 3) Alllz the minimal
P . . n

completely semiprime ideal of T relative to containing A.4) A2 ={XxeT:x & Afor some odd natural number n}5) A3 =the

intersection of all prime ideals of T containing A.6) A%z the intersection of all minimal prime ideals of T containing A.7)

A%l = the minimal semiprime ideals of relative to containing A.8) A4 ={xeT < x> < A for some odd natural number n

} are equivalent. If A is an ideal in a po ternary semigroup then it is proved that (1) A is completely semiprime, A is semiprime
and pseudo symmetric. A is semiprime and semipseudo symmetric are equivalent and (2) A is completely prime; A is prime and
pseudo symmetric. A is prime and semipseudo symmetric are also equivalent. If M is maximal ideal of a po ternary semigroup

T with M4¢T then it is proved that M is completely prime, M is completely semiprime, M is pseudo symmetric and M is

semipseudo symmetric are equivalent.
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1. Introduction

Ramakotaiah and Anjaneyalu [1] introduced the notions of pseudo symmetric ideals in semigroups. Pseudo symmetric semigroups and
exhibit some examples and some classes of pseudo symmetric semigroups .Krishna Murthy and Arul Dass [11] introduced the notions
of pseudo symmetric I" ideals in I" semigroups. Sarala, Anjaneyulu and Madhusudhana Rao [21] introduce and made a study on
pseudo symmetric ideals in ternary semigroups.

2. Preliminaries
DEFINITION 2.1: A ternary semigroup T is said to be a partially ordered ternary semigroup if T is a partially ordered set such
thata=b =[aa; a,] = [ba; a,], [a1a a] =[ab &, [a1a a] =[a; ab] foralla, b, a;,8,T.

NOTE 2.2: A partially ordered ternary semigroup is also called as po ternary semigroup or ordered ternary semigroup.

NOTATION 2.3: Let T be a po ternary semigroup and S be a non-empty subset of T. If H is a non-empty subset of S, we denote
{s€S:s<h for some he H} by (H]r.
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NOTATION 2.4: Let T be a po ternary semigroup and S be a non-empty subset of T. If H is a non-empty subset of S, we denote
{seS:h<s for some he H} by [H)+.

DEFINITION 2.5: Let T be a po ternary semigroup. A nonempty subset S of T is said to be a po ternary subsemigroup of T if i)
abceSforalla,b,ceS i)teT;seS,t <S=teS

NOTE 2.6: A non-empty subset S of a po ternary semigroup T is a po ternary subsemigroup of T if and only if i) SSSc S ii) (S] =S.

EXAMPLE 2.7: Let Z be the set of all intergers. Define multiplication on Z by [xyz] = min {x,y,z} for all x ,y ,ze Z. Then
Z is po ternary semigroup. Let Z" be the set of all negative integers. Then Z is a po ternary subsemigroup of Z.

EXAMPLE2.8: Let T=[0,1].Then T is a po ternary semigroup under the usual multiplication and usual order relation .Let S=[O,%].
Then S is a po ternary subsemigroup of T.

DEFINITION 2.9: A nonempty subset A of po ternary semigroup T is said to be a po left ternary ideal or po left ideal of T if i)
b,cET,a=A =bcacAii) afAandt=Tsuchthat t=a=1teA.

NOTE 2.10: A nonempty subset A of po ternary semigroup T is a po left ternary ideal of T if and only if i) TTACA ii)(A] €A

DEFINITION 2.11: A nonempty subset A of po ternary semigroup T is said to be a po lateral ternary ideal or po lateral
idealof Tif i)b,cET,a€A = bacEAii) acAand tETsuchthatt =a="t=A.

NOTE 2.12: A nonempty subset A of po ternary semigroup T is a po lateral ternary ideal of T if and only if i) TATS A ii)(A] SA.

DEFINITION 2.13: A nonempty subset A of po ternary semigroup T is said to be a po right ternary ideal or po right ideal of T if
i)b,cET,aEA =rabc EAii) aSAandtETsuchthatt=a=1tEA.

NOTE 2.14: A nonempty subset A of po ternary semigroup T is a po right ternary ideal T if and only if i) ATTS A ii) (A] CA.

DEFINITION 2.15: A non-empty subset A of po ternary semigroup T is said to be po two sided ternary ideal or po two sided
idealof Tif i)b,c€T,a=A="bcaEA,abc €A
ii)asAandtE Tsuchthatt=a=tE€A.

NOTE 2.16: A nonempty subset A of po ternary semigroup T is a po two sided ternary ideal of T if and only if i) TTAC A; ATTS A
ii)(A] €A

NOTE 2.17: A nonempty subset A of po ternary semigroup T is a po two sided ideal of T if and only if it is both a po left ideal and a
po right ideal of T.

DEFINITION 2.18: A nonempty subset A of po ternary semigroup T is said to be a
po ternary ideal or poideal of Tif i)b,cET,aEA=-bca=A, bac A abc €A
ii) agAand tETsuchthat t=a=tEA.

NOTE 2.19: A nonempty subset A of po ternary semigroup T is a po ideal of T if and only if i) TTACA; ATTC A, TATS A ii)(A]
CA.

NOTE 2.20: A nonempty subset A of po ternary semigroup T is a po ideal of T if and only if itis a left po ideal, lateral po ideal,
and right po ideal of T.

EXAMPLE 2.21: Let N be the set of all natural numbers. Define the ternary operation from
N x N x N —=*N as (a, b, c) = a.b.c where *. * is usual multiplication and ordered relation

= on N. Then N is a po ternary semigroup and A =3N is a po ideal of the po ternary
semigroup N.
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DEFINITION 2.22: A po ternary semigroup T is said to be a commutative provided for all
a,b,c € T we have i) abc = bca= cab= bac=cha=acb
iijaEAandtETsuchthat t=a=tEA.

DEFINITION 2.23: A po ternary semigroup T is said to be a quasi commutative provided i) for each a,b,cE T there exist natural

number ‘n’ such that
abc = b"ac = bca = c"ba = cab = a"cb =ach.

DEFINITION 2.24: An element a of a po ternary semigroup T is said to be a left identity of T provided aat =tandt =a for all
teT.

NOTE 2.25: Left identity element a of a po ternary semigroup T is also called as a left unital element.

DEFINITION 2.26: An element a of a po ternary semigroup T is said to be a right identity of T provided taa=tandt =a for all
teT.

NOTE 2.27: Right identity element a of a po ternary semigroup T is also called as right unital element.

DEFINITION 2.28: An element a of a po ternary semigroup T is said to be a lateral identity of T provided ata =tandt = a for all
teT.

NOTE 2.29: Lateral identity element a of a po ternary semigroup T is also called as a lateral unital element.

DEFINITION 2.30: An element a of a po ternary semigroup T is said to be a two sided identity of T provided aat =taa =t and t
=aforall t T.

NOTE 2.31: Two- sided identity element of a ternary semigroup T is also called as a
bi-unital element.

DEFINITION 2.32: An element a of a po ternary semigroup T is said to be an identity provided aat =taa =ata=tandt =a for
all t T,

NOTE 2.33: An identity element of a po ternary semigroup T is also called as a unital element.

NOTE 2.34: An element a of a po ternary semigroup T is said to be an identity of T then
a is aleft identity, lateral identity and right identity of T.

NOTATION 2.35: let T be a po ternary semigroup. if T has an identity, Let T =T and if T does not have an identity, let T 'be the
po ternary semigroup T with an identity adjoined usually denoted by the symbol 1.

Definition 2.36: An ideal A of a po ternary semigroup T is said to be a trivial ideal provide T\A is singleton.

Definition 2.37: An ideal A of a po ternary semigroup T is said to be a completely prime ideal provided x ,y ,zeT and xyze A
implies either xe AoryeAor ze A

Definition 2.38: An ideal A of a po ternary semigroup T is said to be a completely semiprime ideal provided xe T, x" € A for some
odd natural number n >1 implies x € A.

Definition 2.39: An ideal A of a po ternary semigroup T is said to be a prime ideal of T provided are X, y, z are ideals of T and
XYZ c A= X cAorY c AorZ cA

Definition 2.40: An ideal A of a po ternary semigroup T is said to be a semiprime ideal provided x is an ideal of T and
x N < Aiimplies X < A for some odd natural number n
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Theorem 2.41: Let A be any pseudo symmetric ideal in a po ternary semigroup T and &, @,,...... apn € T where nis an odd natural

number. Then @, a,......a, €A ifandonlyif <a, ><a, >...<ap >cA.

Corollary 2.42: Let A be a pseudo symmetric ideal in a po ternary semigroup T, then for any odd natural number n, an e Aif and
onlyif <a>"c A

Theorem 2.43: Let A be a prime ideal of a po ternary semigroup T. If A is completely semiprime ideal of T then A is compleltely
prime.

Theorem 2.44: Every completely semiprime ideal of a po ternary semigroup is semiprime.

Theorem 2.45: An ideal A of a po ternary semigroup T is semiprime if and only if X is an ideal of T, X 3 c A implies X C A

Theorem 2.46: Every completely prime ideal of a po ternary semigroup is prime.
Theorem 2.47: Every prime ideal of a po ternary semigroup is semiprime.

Notation 2.48: If A is an ideal of a po ternary semigroup T, then we associate the following four type of sets.
A, = The intersection of all completely prime ideals of T containing A.

A2 ={xeT: x" € A for some odd natural number n}
A3 = The intersection of all prime ideals of T containing A

A4 ={XxeT:<X >N < A for some odd natural number n}

Theorem 2.49: If A'is an ideal of a po ternary semigroup T, then AC A4 c A3 cA cA

Corollary 2.50: If an ideal A of a po ternary semigroup T is completely semiprime then xy,z,€T,
XyZ e A=< x><y><z2>cA.

3 Semipseudo Symmetric ldeals
DEFINITION 3.1: An ideal A in of a po ternary semigroup T is said to be a semipseudo symmetric provided for any odd natural

numbersn, XeT , X"e A=< x>"cA

DEFINITION 3.2: An ideal A of a Po ternary semigroup T is said to be a Pseudo symmetric provided x ,y , ze T; Xyz € A implies
xsytz € A foralls,t eT.

THEOREM 3.3: Every Pseudo symmetric ideal of a po ternary semigroup is a semipseudo symmetric ideal.
Proof: Let A be a pseudo symmetric ideal of a po ternary semigroup T.

Letxe T and X" € A for some odd natural numbers n.

By corollary 2.42 x Ne A= <x>" cA
Therefore A is a semipseudo symmetric ideal.

Note 3.4: The converse of theorem 3.3 is not true i.e a semipseudo symmetric ideal of a po ternary semigroup need not be a pseudo
symmetric ideal.

Example 3.5: Let T be a free po ternary semigroup over the alphabet {a ,b ,c ,d ,e}. Let A = < abc>U < bca>"" <cab>. Since
abce Aand adbec ¢ A, A is not pseudo symmetric.

Suppose Xn € A for some odd natural numbers n. Now the word ‘X’ contains abc or bcause or cab and hence <x> n cA.

n

Therefore Xn € A for some odd natural number ‘n’. =< X>" < A. Therefore A is a semipseudo symmetric ideal.
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THEOREM 3.6: Every semiprime ideal P minimal relative to containing a semipseudo symmetric ideal A in a po ternary semigroup
T is completely semiprime.

Proof: Write S={x":neT \ P for any odd natural numbers n }.
First we show that ANS =@ If ANS#¢, then there exist an element XeT \P such that x & Awhere n is an odd natural

number. Since A is a semipesudo symmetric ideal, < X>ngAg p= < X>ng p= Xep. It is a contradiction thus
ANS=¢ consider the set >.={B:Bis an ideal in T containing A such that BMS=¢}.Since A€, 2 is nonempty. Now >

is a poset under set inclusion and satisfies the hypothesis of Zorn’s lemma. Thus by zorn’s lemma 2. contains a maximal element,
say M.

Suppose < a >3

NS#g.
Then there exists XeT \ Psuch that X" e<a>NS for some odd natural number n.

Therefore X3n e<a >3 NScMnNnS= X3n €M NS . Itisa contradiction. Therefore M is a semiprime ideal containing A

Now AcM < T\ScPSince P is a minimal semiprime ideal relative to containing A. We have M =T \S=P. Let

c Mand agM . Then M U<a> is an ideal containing A. Since M is maximal in 2., we have (M U <a>)

xeS;xMep suppose if possible X¢ p
Now X¢P= xeS= Xm €S . Itisa contradiction. Therefore XeP Hence P is a completely semiprime ideal.

COROLLARY 3.7: Every prime ideal P in a po ternary semigroup T minimal relative to containing a semipseudo symmetric ideal A
is completelyprime.

Proof: Since every prime ideal is a semiprime ideal, by Theorem 3.6, we have P is a completely semiprime ideal and by Theorem
2.43, P is a completelyprime ideal.

COROLLARY 3.8: Every prime ideal minimal relative to containing a pseudo symmetric ideals A is a po ternary semigroup T is
completelyprime.

Proof: Let P be a prime ideal containing a pseudo symmetric ideal A of a po ternary semigroup T. By theorem 3.3, every pseudo
symmetric ideals is a semipseudo symmetric ideal, by corollary 3.7, P is a completelyprime ideal of T.

THEOREM 3.9: If Aisan ideal in a po ternary semigroup T, then the following are equivalent.
1) A'is completely semiprime

2) A is semiprime and pseudo symmetric

3) A is semiprime and semipseudo symmetric.

Proof: (1) = (2) : Suppose A is completely semiprime ideal of T By theorem 2.44, A is a semiprime ideals of T Let x,y,z €T and
xyze A

(yzx)3 =(yzx) (yzx) (yzx) = yz (xyz) (xyz) x € A; therefore (yzx)3 eA,
A is completely semiprime ideal = yzXe A

Similarly (zxy)3 =(zxy) (zxy) (zxy) =z (xyz) (xyz) xy € A; therefore(zxy)3 eA
A is completely semiprimeideal = zxy € A

IfsteT? then (xsytz)3 =(Xxsytz) (xsytz) (xsytz) = xsyt[ zx (syt) (zxs)yJtze A

(xsytz) 3 € A, Ais completely semiprime ideal = XSytz € A. Therefore A is a pseudo symmetric ideal.

(2) = (3): Suppose A is semiprime and pseudo symmetric .By theorem 3.3, A is a semipseudo symmetric ideal. Hence A is a

semiprime and semipseudo symmetric.

3

(3) =(1):Suppose A is semiprime and semipseudo symmetric .LetXxeT ,X” €A, Since A is semipseudo symmetric,

XeT, x3e A= <x>3 < A. Since A is semiprime, by Theorem 2.45, <x>3 c A= <Xx>c A. Therefore A is completely
semiprime.
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DEFINITION 3.10: An element a of a po ternary semigroup T is said to be semisimple provided ae<a>3, that is

<a >3:<a>

DEFINITION 3.11: A po ternary semigroup T is said to be a semisimple po ternary semigroup provided every element in T is
semisimple.

THEOREM 3.12: If Ais an ideal of a semisimple po ternary semigroup T, then the following are equivalent
1) A'is completely semiprime

2) A is pseudo symmetric

3) A is semipseudo symmetric.

Proof: (1) = (2) : Suppose that A is completely semiprime. By theorem 3.9, A is pseudo symmetric.
(2)= (3) : Suppose that A is pseudo symmetric. By theorem 3.9, A is semipseudo symmetric

3)= (1) : Suppose that A is semipseudo symmetric. Let XeT,X3eA, Since A is semipseudo
pp p Yy p

3 e A=< x>~ c A Since T is semisimple, x is a semisimple element,

3

symmetric X

therefore Xe< X >~ c A. Thus A is completely semiprime.

THEOREM 3.13: If A is an ideal of po ternary semigroup T, then the following are equivalent.
1) A'is completely semiprime

2) A is prime and pseudo symmetric

3) A is prime and semipseudo symmetric.

Proof: (1) = (2) : Suppose that A is completely prime.
By theorem 2:46, A is prime Let x ,y ,ze T and xyz € A

Xyz € A; Ais completely prime = xe Aor ye Aorze A= xsytze A forall s,teT
Therefore A is pseudo symmetric and prime.

(2) = (3): Suppose that A is prime and pseudo symmetric.

Since A is pseudo symmetric, by Theorem 3.9, A is semi pseudo symmetric

(3) = (1): Suppose A is prime and semipseudo symmetric.

Since A is prime by theorem 2.47, A is semiprime.

Since A is semiprime and semipseudo symmetric, by theorem 3.9, A is completely semiprime. Since A is prime and completely
semiprime by theorem 2.43, A is completely prime.

Theorem 3.14: Let A be a semipseudo symmetric ideal of a po ternary semigroup T. Then the following are equivalent.
1) A = The intersection of all completely prime ideals of T containing A.

2) A11 = The intersection of all minimal completely prime ideals of T containing A

3) A111 = The minimal completely semiprime ideal of T relative to containing A.

4) A, ={xeT :x" € A for some odd natural number n}.

5) A, = The intersection of all prime ideals of T containing A.

6) A31 = The intersection of all minimal prime ideals of T containing A.

7) AS11 = The minimal semiprime ideal of T relative to containing A.

8) A, ={xeT < x> < A for some odd natural number n}
Proof: Since completely prime ideals containing A and minimal completely prime ideals containing A and minimal completely

semiprime ideals relative to containing A are coincide, it follows that A = Ai1 = Aill. Since prime ideals containing A and minimal

prime ideals containing A and the minimal semiprime ideals relative to containing A are coincide, it follows that A, = A31 = Ag11 .Since
A is semipseudo symmetric ideal, we have A, = A4 .Now by theorem 3.6, we have A111 = A,al,l .Therefore
A=A=A"=A=A=A"and A, =A,
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Hence the given conditions are equivalent.

Theorem 3.15: If M is a maximal ideal of a po ternary semigroup T with M 4 #T, then the following are equivalent.
1) M is completely prime.

2) M is completely semiprime.

3) M is pseudo symmetric.

4) M is semipseudo symmetric.

Proof: (1) = (2). Suppose that M is completely prime.

By theorem2.46, M is completely semiprime.

(2) = (3).Suppose that M is completely semiprime ideal of the po ternary semigroup T.
By theorem 3.9, M is pseudo symmetric.

(3) = (4).Suppose that M is pseudo symmetric. By theorem 3.12, M is semipseudo
symmetric.

(4) = (1):Suppose that M is semipseudo symmetric.

By theorem 3.14,M < M, T Since M is maximal ideal and M, #T, itimplies that M =M,
Let Xe T, x>e M , Since M is semipseudo symmetric, < X >3 c M. Then xeM,=M
.. M is completely semiprime.

Letx,y,z €T ;Xyze M . Since M is completely semiprime, by corollary 2.50
XyZe M =><x><y><z>cM

Suppose if possible XgM,ygM,z¢M ThenMU <x>, MU <y > M <z >areideals of T

and M U<x>, Mu<y>Mu<z>=T. Since M is maximal,

y,Ze Mu<x>X,ze Mu<y>and x,yeMu<z>=Yy,ze <X>; X, Ze<y>, X,ye<z>
=><X>=<Y>=<2Z>

Now < X><y><zZ>c M :><x><y><z>:<x>3gM:>x3eM:>XGM

It is a contradiction. Therefore either XeM or yeM or zeM
.. M is completely prime.

4. Conclusion

Anjaneyulu .A initiated the study of pseudo symmetric ideals in semigroups. Madhusudhana Rao.D initiated the study of theory of I’
ideals in I" -semigroups. Sarala.Y initiated the study of theory of ideals in ternary semigroups and hence the study of ideals in
semigroups, I" semigroups and po I" semigroups creates a platform for the pseudo symmetric ideals in po ternary semigroups.
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