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1. Introduction 

Heat and mass transfer from a heated moving surface to a quiescent ambient medium occurred in many 

manufacturing processes such as hot rolling, wire drawing and crystal growing (Nag, 2006). Hydromagnetic flow is one of 

the fundamental problems in heat and mass transfer (Mohsen & Devood, 2016). 

Investigations on hydrodynamic boundary layer flow and heat transfer over a stretching surface have gained 

appreciable attention due to their extensive applications in industry and their importance to several technological 

processes, which include the aerodynamic extrusion of plastic sheets, cooling of metallic sheets in a cooling bath, crystal 

growing. Crane (1970) investigated the steady boundary layer flow due to stretching surface with linear velocity. Many 

researchers, such as Gupta and Gupta (1977), Vleggaar (1997), and Chen and Char (1988), extended the work of Crane by 

considering the effects of heat and mass transfer analysis under different physical situations. 

Simultaneous heat and mass transfer from different geometries may arise during industrial operations where the 

surface is sometimes stretched because of the process of drawing, for example, the process of cooling continuous strips or 

filament by drawing them through a quiescent fluid where simultaneous heat and mass transfer may occur during the 

cooling. Hence, it can be deduced that the combined heat and mass transfer can play a vital role in the problems of 

hydromagnetic flow over an impermeable surface. A new facet of approaching such problems can be given by considering 

the effect of thermal radiation. The thermal radiation effect might play a significant role in controlling the heat process in 

the polymer processing industry. The quality of the final product depends greatly on the heat-controlling factors and the 

knowledge of radiative heat transfer can perhaps lead to a desired product with a sought characteristic. 

Many works have been reported on flow and heat transfer over a stretched surface in the presence of radiation. 

An analytical solution of MHD flow with radiation over a stretching sheet embedded in a porous medium was given by 

Anjali Devi and Kayalvizhi (2010). Makinde and Sibanda (2011) investigated the chemical reaction effects over the 

stretching surface in the presence of internal heat generation. Seini and Makinde (2013) studied the radiation and 

chemical reaction effects on MHD boundary layer flow over a stretching surface. Abdul Hakeem et al. (2014) investigated 

the thermal radiation effects on hydromagnetic flow over a stretching surface. The influence of thermal radiation on MHD 

flow over a stretching surface was studied by Jonnadula et al. (2015). 

Durojaye and Ayeni (2011) consider a steady-state solution reaction kinetics model of polymerization in the 

presence of material diffusion. They obtained steady-state equations for the resulting partial differential equations. 

Criteria for the existence and uniqueness of solutions of the equations and numerical results were also provided. They 

concluded that the steady state equation is bounded and has a solution under reasonable physical conditions. 

Durojaye and Agee (2019) investigated the one-dimensional, positive temperature coefficient (PTC) thermistor 

equation, using the hyperbolic-tangent function as an approximation to the electrical conductivity of the device. They 

observed that the steady state solution using the new approximation yielded a distribution of device temperature over the 
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spatial dimension and all the phases of the temperature distribution of the device without having to look for a moving 

boundary. They analysed the steady state solution and the numerical solution of the unsteady state. 

Taking consideration of dissipation effects in the study of heat and mass transfer boundary layer problems adds a new 

dimension to it. Gebhart (1962) was the first who studied the problem taking into account the viscous dissipation. 

Kayalvizhi et al. (2016) and Dessie and Kishan (2015) examined the effects of viscous dissipation and ohmic dissipation on 

MHD flow over a stretching surface with thermal radiation effects. 

All the above-mentioned studies are confined to the steady state flow problems. However, in certain practical 

problems, the motion of the stretched surface may start impulsively from rest. In such cases, the transient or unsteady 

aspects become more interesting. Effects of radiation and heat transfer over an unsteady stretching surface in the presence 

of a heat source or sink were studied by Elbashbeshy and Emam (2011). Makinde (2012) analyzed the chemically reacting 

hydromagnetic unsteady flow of a radiating fluid. Yusof et al. (2012) analyzed the radiation effect on unsteady MHD flow 

over a stretching surface. Mass transfer and MHD effect on an unsteady stretching surface were investigated by Ramana 

Reddy and Bhaskar Reddy (2013). Seini and Makinde (2013) analyzed the radiation and recently, unsteady MHD flow and 

heat transfer over a stretching permeable surface were investigated by Choudhary et al. (2015). Reddy et al. (2015) 

considered the thermal radiation and viscous dissipation effects on unsteady MHD flow over a stretching surface. 

Durojaje et al. (2013) also presented a mathematical model for free racial polymerization in the presence of 

material diffusion. They proved the existence and uniqueness of the solution of the model. They used the parameter 

expanding method and sought direct eigen functions expansion to obtain an analytical solution to the model. The results 

were presented graphically and discussed. It was discovered that the mixture temperature and monometer concentration 

were significantly influenced by Kamenetskii number and thermal diffusivity of the mixture. 

However, to the best of the author's knowledge, no attempt has been made to investigate the effects of thermal radiation, 

viscous dissipation, ohmic dissipation and heat and mass transfer effects on transient hydromagnetic flows over an 

impermeable surface.  

Being motivated by the extensive applications, this paper seeks to investigate the heat and mass transfer effects 

on transient two-dimensional hydromagnetic flow over an impermeable surface. 

The objectives of this paper are to establish the criteria for the existence of a unique solution of the transient two-

dimensional hydromagnetic flow over an impermeable surface with ohmic and viscous heat dissipation and to examine the 

properties of the solution under certain conditions.  

 

2. Model Formulation 

The two-dimensional, transient hydromagnetic flow of a viscous, incompressible, electrically conducting, and 

radiating fluid, along with heat and mass transfer over an impermeable surface with ohmic and viscous dissipation, is 

considered. A constant magnetic field B is applied in the direction perpendicular to that of the fluid flow. 

The formulation of our model is guided by the following assumptions: 

• The fluid is considered to be grey. 

• The radiative heat flux in the x-direction is negligible in comparison with that in the y-direction. 

Under these assumptions, the governing equations that are based on the laws balancing mass, linear momentum, 

energy, and concentration for the present investigation are given as follows:  ���� + ���� = 0                                                                                                                                    (1) 

���	 + 
 ���� + � ���� = Ѵ ���� − ����                                                                                                (2) 

���	 + 
 ���� + � ���� = �� ���� −  ����
����� + Ѵ��� ������� + ���

���                                                    (3) 

���	 + 
 ���� + � ���� =  ����                                                                                                             (4) 

Rosseland approximation is used to simplify the radiative heat flux term in the energy equation, which has the 

form:  !" = − #�∗
%&'

��(
��                                                                                                                                (5) 

The temperature difference within the flow is assumed to be sufficiently small such that )# may be expressed as a 

linear function of temperature. On expanding )# in a Taylor series about )* and thereby neglecting the higher-order 

terms, it is obtained as follows: )# ≈ 4)*% ) − 3)*#                                                                                                                       (6) 

The above-governing equations are associated with the following initial and boundary conditions: 
./, 1, 23 = 0, )./, 1, 23 = )�,    4./, 1, 23 = 4�   / ≥ 0, 1 ≥ 0,   2 = 0.���� = 0,      ���� = 0,      ���� = 0,
 ���� = 0,        ���� = 0,    ���� = 0 ⎭⎬

⎫  / = 0, 1 = 0, 2 > 0

./, 1, 23 = ;*, )./, 1, 23 = )*,    4./, 1, 23 = 4*,   / = <, 1 = =, 2 ≥ 0.      ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

                         (7) 
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Where:  
 is the velocity component along the /-axis,  �  is the velocity component along the 1-axis,   Ѵ  is the 

kinematic coefficient of viscosity, ? is the electrical conductivity of the fluid, @  is the strength of the applied variable 

magnetic field,  A is the fluid density, ) is the temperature of the fluid, �� = B AC D� is the thermal diffusivity with B as the 

thermal conductivity of the fluid,  D� is the specific heat capacity at constant pressure, !"  is the radiative heat flux, C is the 

concentration of the fluid, D is the coefficient of mass diffusivity,  !"   is the radiative heat flux,  ?∗ is the Stefan -Boltzman 

constant,  E� is the mean absorption coefficient. 

 

3. Method of Solution 

 

3.1. Transformation 

Introducing the following new space variable (Olayiwola et al., 2013): F = / + 1                                                                                                                                   (8) 

The equations (1–6), together with initial and boundary conditions (7), become: �G�H = 0                                                                                                                                         (9) 

���	 + ; ���H = Ѵ ���H − ����                                                                                                       (10) 

���	 + ; ���H = �� ���H =   �I�∗�J%&'���  ���H + Ѵ�� ����H�� + ���
���                                                            (11) 

���	 + ; ���H =    ���H                                                                                                                 (12) ;.F, 23 = 0, ).F, 23 = )�,    4.F, 23 = 4�   F ≥ 0, 2 = 0.�G�H = 0,    ���H = 0, ���H = 0,     F = 0, 2 > 0   ;.F, 23 = ;*, ).F, 23 = )*,    4.F, 23 = 4*   F = ℎ,    2 ≥ 0.  ⎭⎪⎬
⎪⎫

                                             (13) 

Where:       ; = 
 + � 

 

3.2. Dimensional Analysis 

Introducing the following non-dimensional variables: 2L = G	M ,      FL = HM  ,        
L = �G  ,        N = �O�P�JO�P ,        Q = �O�P�JO�P                                                      (14) 

Then, equations (9) – (13) become:  ���	 + ���H =  �RS  ���H − T
                                                                                                          (15) 

�U�	 + �U�H =  �VS  �U�H   −  W �U�H   + XYRS ����H�� + Z�T 
�                                                                  (16) 

�[�	 + �[�H =  �VS\  �[�H                                                                                                                   (17) 

 
.F, 03 = 0,    ���H]H^� = 0, 
.1, 23 = �
N.F, 03 = 0,    �U�H]H^� = 0,   N.1, 23 = 1

Q.F, 03 = 0,    �[�H ]H^� = 0,   Q.1, 23 = 1  ⎭⎪
⎬
⎪⎫

                                                                             (18) 

Where: W` = M�Ѵ ,   T =  ��M�� ,    a` = M�bP  ,         Z� =  �
��.�JO�P3,    a`c = M�d ,    W = �I�∗�J%&'���M� 

 

3.3. Properties of Solution 

First, we extend the domain from 0 ≤ F ≤ 1  to  0 ≤ F ≤ ∞  and consider equations (15) – (18) when u is constant 

and � �iS − W� = �iS\.  
Then equation (15) - (17) reduces to:  �U�	 + �U�H =  �VS\  �U�H   + Z�T 
�                                                                                                 (19) 

�[�	 + �[�H =  �VS\  �[�H                                                                                                                    (20) 

Adding (19) and (20) leads to:  �j�	 + �j�H =  �VS\  �j�H    + Z�T 
�                                                                                              (21) 

Where: k  =  .N + Q3 

We make a change of variable by introducing (Olayiwola, 2011).  

ɳ = � �
iS\�O' m AnoH�                                                                                                                   (22)     
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Using (22), the coordinate transformation becomes:  ��H  →  ��ɳ  , ��	  →  ��	 − ��ɳ                                                                                                         (23) 

Using (23), equation (21) in terms of  ɳ qrn 2  are: �j�	 − �j�ɳ  = Z�T 
�                                                                                                                  (24) 

With initial and boundary conditions: k.ɳ, 03 = 0, k.0, 23 = 4� + 4�, k.∞, 23 → 2                                                                      (25) 

Theorem 1: LetT → 0. Then, there exists at most one bounded solution of equations (19) and (20) satisfying (18). 

Proof: We add (19) and (20) and obtain (24) satisfying (25) as earlier done. 

Using the Fourier sine transform (see Myint-U and Debnath, (1987)), we obtain the solution to the problem (24) 

in compact form as:

 k.t, 23 = �u .4� + 4�3 m o ovr ot*� m wOx.	Oy3	� nzno                                                               (26)                                                               

That is: k.F, 23 = �u .4� + 4�3 m o ovr {a`c*� Fo m wOx.	Oy3	� nzno                                                     (27)                                                 

Then, we obtain:  Q.F, 23 = �u .4� + 4�3 m o ovr {a`c*� Fo m wOx.	Oy3	� nzno − N.F, 23                                     (28) N.F, 23 = �u .4� + 4�3 m o ovr {a`c*� Fo m wOx.	Oy3	� nzno − Q.F, 23                                      (29)                                   

Hence, there exists a unique solution to problems (19) and (20). This completes the proof. 

Next, we shall examine the properties of the solution of equations (15) - (18). 

Here, we show that 
.F, 23, N.F, 23, k.F, 23 are bounded. We consider equation (15) – (18) when 
.0, 23 = q,N.0, 23 = |, and  Q.0, 23 = D. Then equations (15) - (18) become: 

      ���	 + ���H =  �RS  ���H − T

.F, 03 = 0,    
.0, 23 = q, 
.1, 23 = � �                                                                          (30) 

�U�	 + �U�H =  �VS  �U�H   −  W �U�H   + XYRS ����H�� + Z�T 
� N  .F, 03 = 0, N.0, 23 = |, N.1, 23 = 1   �                                                                (31) 

�[�	 + �[�H =  �VS\  �[�H  Q.F, 03 = 0  Q.0, 23 = D, Q.1, 23 = 1,�                                                                                 (32) 

Theorem 2:  Let T > 0, q > 0, | > 0, D > 0,   � > 0, then the equations (30) – (32) have a solution for all. 2 ≥ 0. 

In the proof, we shall need the following Definitions: 

Definition 1 (Olayiwola, 2011): A smooth function 
 is said to be a lower solution to the problem <
 = �./, 2, 
3 

Where: 

< = ��2 + q./, 23 ��
�/� + |./, 23 ��/ + D./, 23

 If 
  satisfies, <
 ≤ ��/, 2, 
� 

( ) ( ) ( ) ( ) ( ) ( )thtLuthtuxfxu
21

,,,0,0, ≤≤≤  

Definition 2 (Olayiwola, 2011): A smooth function  
 is said to be an upper solution to the problem. <
 = �./, 2, 
3 

Where: 

< = ��2 + q./, 23 ��
�/� + |./, 23 ��/ + D./, 23 

If  
 satisfies, <
 ≥ �./, 2, 
3 

( ) ( ) ( ) ( ) ( ) ( )thtLuthtuxfzu
21

,,,0,0, ≥≥≥   

Proof of Theorem 2: Equations (30) – (32) can be written respectively as: <
 = �.F, 2, 
3, <N = �.F, 2, N3, <Q = �.F, 2, Q3                                                                 (33)                       

Where: <
 = ���	 + ���H =  �RS  ���H − T
, �.F, 2, 
3 = 0 

<N = �U�	 + �U�H −  � �VS  −  W � �U�H  , �.F, 2, N3 = XYRS ����H�� + Z�T 
�        

<Q = �[�	 + �[�H =  �VS\  �[�H  , �.F, 2, Q3 = 0 

Consider: 

 
.F, 23 = 0, N.F, 23 = 0, Q.F, 23 = 0                                                                                   (34)                                                                                                   

We shall show that (34) are the lower solutions. 

Clearly, 
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.F, 03 = 0, 
.0, 23 = 0, 
.1, 23 = 0
N.F, 03 = 0, N.0, 23 = 0, N.1, 23 = 0  Q.F, 03 = 0, Q.0, 23 = 0, Q.1, 23 = 0⎭⎪

⎬
⎪⎫

                                                                                (35) 

Now, ���	 =  ���H =  ���H = 
 = 0                                                                                                         (36) 

�U�	 =  �U�H =  �U�H = 0                                                                                                                 (37) 

�[
�	 =  �[

�H =  �[
�H = 0                                                                                                                (38) 

These imply: 

 <
 = 0,      <N = 0,       <Q = 0                                                                                               (39) 

and ��F, 2, 
� = 0, ��F, 2, N� = 0, � �F, 2, Q� = 0                                                                       (40)                          

Hence, <
 ≤ ��F, 2, 
�, <N ≤ ��F, 2, N�, <Q ≤ � �F, 2, Q�                                                                

By definition 1, 
.F, 23 = 0, N.F, 23 = 0, Q.F, 23 = 0  are the lower solutions. 

Also, consider, 
.F, 23 = .1 + q3 + 2N.F, 23 = .1 + |3 + 2 �Z�T�.1 + q3 + 2���Q.F, 23 = .1 + D3 + 2 ⎭⎪⎬
⎪⎫

                                                                 (41)                                                                            

We shall show that (41) is the upper solution. 

Clearly, 
.F, 03 = .1 + q3, 
.0, 23 = .1 + q3 + 2, 
.1, 23 = .1 + q3 + 2  N.F, 23 = .1 + |3, N.0, 23 = .1 + |3 + 2  �Z�T�.1 + q3 + 2��� ,
                             N.1, 23 = .1 + |3 + 2  �Z�T�.1 + q3 + 2���Q.F, 03 = .1 + D3, Q.0, 23 = .1 + D3 + 2, Q.1, 23 = .1 + D3 + 2  ⎭⎪

⎬
⎪⎫

                                    (42)                                                                                     

Now, ���	 = 1, ���H =  ���H = 0 , 
 = .1 + q3 + 2                                                                              (43) 

�U�	 = Z�T�.1 + q3 + 2�� + 2Z�T�.1 + q3 + 2�2 ,   �U�H =  �U�H = 0                                      (44) 

 �[
�	 = 1, �[

�H =  �[
�H = 0                                                                                                           (45) 

These imply: <
 =  T�.1 + q3 + 2��
<N =  Z�T�.1 + q3 + 2�� + 2Z�T�.1 + q3 + 2�2<Q = 1 ⎭⎪⎬

⎪⎫
                                                             (46)                                     

and  �.F, 2, 
3 = 0, ��F, 2, N � = Z�T�.1 + q3 + 2��, �.F, 2, Q3 = 0                                          (47)             

Hence, <
 ≥ �.F, 2, 
3,     <
 ≥ ��F, 2, N �,     <
 ≥ �.F, 2, Q3                                   

By definition 2, .413 are the lower solutions. 

Thus, there exists a solution to problems  .303 − .323. This completes the proof. 

 

4. Conclusion 

To examine the properties of the solution of the transient two-dimensional hydromagnetic flow over an 

impermeable surface with ohmic and viscous heat dissipation, we used the actual solution approach and method of upper 

and lower solution as presented in the work of Olayiwola (2011). The results obtained revealed that the fluid velocity

( )tzu , , species concentration ( )tz,φ and temperature ( )tz,θ  are bounded. 
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