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1. Introduction and Overview of Results  
In this article three new ideas are introduced to support the concept of time as a time interval. These are a new 

definition of time coordinates, the introduction of time intervals for derivatives and the application of the “mean velocity 
theorem” to describe equilibrium. The time coordinates, asymmetric to the past and future, agree with an asymmetric time 
experience and from there the introduction of time intervals is natural. The concept of time as a time moment is basic to 
many theories in physics. However, with time moments one cannot easily understand change or continuity. In Hamilton’s 
principle of least action, a time interval occurs, however it depends on virtual, not real, variations. The resulting 
Lagrangian equations, that do describe equilibrium effectively, depend on derivatives to time moments only. Newtonian 
equilibrium as well only applies derivatives to time moments. There the problem of time moments related to change 
already emerges. A new description of equilibrium is proposed based on time intervals, with the help of the above three 
concepts. 

The “mean velocity theorem” (paragraph 3) includes a graphical way to describe a “time” of equilibrium in the 
sense of a center of weight, and naturally provides the possibility to introduce time intervals and derivatives to time 
intervals. Also, it provides an intuitively clear understanding of symmetries and asymmetries during equilibrium. From it 
follow derivatives and commutation properties related to time intervals for any function of time moments t (paragraph 4). 
The properties of space coordinates q(t) thus derived are applied throughout the further parts of this article. In paragraph 
8) introduced is the specific time interval necessary for derivatives to time intervals. 

Time coordinates and their properties are defined in paragraph 6) and paragraph 8). Time is assumed to depend 
on two elements that added together result in a one-dimensional time coordinate. One of these elements is anti-symmetric 
for past and future, and it counts time with positive numbers. The other one is symmetric and decisive for from when time 
is counted. With these definitions time coordinates do not commute and the value of a product of time dependent 
quantities does depend on their writing order. 

The derivative to time intervals and the “mean velocity theorem” are applied to derive expressions for the time 
dependent Hamiltonian, (paragraph 5) and (paragraph 7) and the time interval derivative of the Hamiltonian (paragraph 
8). The commutation properties for q(t) derived in paragraph 4) are the basis for these results, however this Hamiltonian 
can be derived independently also from the equilibrium definition in terms of the generator of time transformations. A 
step by step transformation for time intervals prepares for how in General Relativity stationary state “local” time intervals 
can be integrated towards “non-local” time interval measurements (paragraph 11). Because of limits on the resulting time 
interval measures, this allows for a probabilistic interpretation for quantities that have these intervals as time domain. 
Thus, these measures are interesting in both a GR as a QM sense. The time intervals also question the time reversal 
symmetry of GR. As a second application the QM description of the measurement of starlight radiation energy is expressed 
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in terms of the interval derivative of the time dependent Hamiltonian in paragraph 12). In the final paragraph (13) 
discussed is the relation between time interval, space interval, starlight frequency and metric tensor. 
 
2. Equilibrium with Time Intervals and a Time Dependent Hamiltonian 

Newton’s laws relate applied forces and the second derivatives to time moments of the space coordinates q, for a 
given mass m. Equilibrium is described as the applied forces being “equal” to the changes of the velocities x, which are the 
first derivatives to time moments of the coordinates q [Goldstein, 1]. 

For a conservative system that is described with a kinetic energy T quadratic in the derivatives dq/dt, the forces F 
= - ߲V/߲q is derived from V, meaning all other energy. For a conservative system the kinetic energy is conserved for a 
closed actual path. Equilibrium based on Hamilton’s principle of least action implies that the integral: I = ∫	L	dt,	from	time 
t1 to t2, with L = T – V the Lagrangian, is an extremum for the actual path of motion compared to other possible paths. 
Otherwise	said	the	δ	variation	of	the	integral	I	is	zero:	δ	I	=	δ	(∫	L	dt|∆t1t2)	=	0.	This	means	that	the	integral	I	for	the	actual 
path is locally stationary, does not change for infinitesimal changes of the path, and thereby determines equilibrium: the 
total energy H0 = T + V is time and space independent and the change in T is the same as the change in –V, thus according 
to	δ	I	=	0	the	first	order	variation	of	both	T	and	V	with	any	varied	path	is	zero.	A	δ	variation	means	the	considered	time	
interval t1 to t2 remains actual and fixed while the considered, virtual or possible however not actual, path may vary from 
the actual path. From there one derives the Lagrangian equilibrium equations, for L = L (x = dq/dt, q), that are equivalent 
to those of a system in Newtonian equilibrium [Goldstein, 1], [Arnold, 2]. This is a description in terms of energy quantities 
like the Lagrangian and the Hamiltonian. Newtonian equilibrium is independent	of	δ	variation	considerations,	however	
similarly applies time moment derivatives of q.  

The total energy H0 = T + V remains time independent for any system. The Hamiltonian H is the Legendre 
transform of the Lagrangian L, and is a function of the parameter p, and H(p, q) = p.x(p) – L(x, q). With p.x is meant a scalar 
product of the vectors p and x. For scalar products like these in the following the relevant factor cos(p, q) is not discussed 
however it will return in paragraph 13). The specific relation x = x(p) is defined with dL/dx = p for x(p). From the 
Lagrangian equilibrium equations for a conservative system it follows that H equals H0 = T + V and is time independent as 
well. The relation between H and L as each other’s Legendre transform will remain valid for the new equilibrium 
description in paragraph 3) and 5) including a time dependent Hamiltonian H. The Hamiltonian H can be evaluated for a 
certain time interval from the difference of L and the asymptotic function p.x, with the “mean velocity theorem”, 
reconsidering the relation dL/dx = p for x(p) which is a time moment derivative relation. For a Newtonian or conservative 
system H reduces again to the total energy H0 as required. 
 
3. The “Mean Velocity Theorem” as a Basis to Describe Variation and Change and (A-) Symmetries 

The symmetry properties of a system tell which transformations do not change the value of the Hamiltonian. 
Similarly, when the value of H changes with some transformation parameter this means an asymmetry exists for some 
property. This agrees with the essence of Curie’s (i.e. Pierre Curie) principle [Curie, 3]. Discussion of Curie’s principle in 
relation to the Higgs mechanism can be found in [Katzir, 4] and [Earman, 5]. In qm field theories group representations of 
symmetries are applied to derive particle properties, and the absence of symmetries gives clues to derive differences 
between properties and for transitions and changes [Veltman, 6]. In this article concentrated is on time intervals and time 
elements and the time dependent Hamiltonian. 

Consider the “mean velocity theorem” [Hannam, 7] [Dijksterhuis, 8], that can be visualized with graphs. The 
theorem states that the area below a horizontal line is the same as the area below a sloped line, when the two lines meet 
and cross each other at that value at the parameter interval for which the sloped line reaches its average, “mean”, value. 
The first line means constant velocity and the second one means varying velocity in the case of a time parameter. Because 
of where the two lines meet and cross each other the theorem is also called the “fixed point theorem”. In Medieval age it 
was derived as the “mean speed theorem”, with the help of graphs. The “mean velocity theorem” is in itself a way to 
imagine equilibrium, like the center of weight is an “average” place. The evaluation of mean velocity graphs was 
generalized from one dimension to higher dimensional spaces by Brouwer, who also introduced the term “fixed points 
theorem” [Hocking and Young, 9]. 

The mean velocity theorem is part of a tradition of thinking how changing properties can be described. Newton 
introduced derivatives, for instance to describe continuously in time the change of velocity in terms of applied forces. To 
relate the function L(x = dq/dt, q) = T – V to H(p, q) as a function of a new coordinate p with dL/dx = p at x(p) was a 
consequence when a description in terms of energies became an alternative to the description in terms of paths. A 
traditional derivative depends on a limiting process from a surrounding interval towards one moment in time or one space 
point. It remains to be interpreted what this limit means for the description of the continuity of variables that change with 
time or start to change with time. For a derivative to an interval instead of to one moment these difficulties do not exist. 
Within quantum mechanics, change is related to probability and discontinuity. Initially in qm reasoning the concept of 
space and time was to be disregarded in favor of abstract energy levels at least in the quantum domain. Any attempt to 
localize for instance with the help of paths is refuted [Beller, 10]. 

Energies relate to symmetries naturally: energies can remain invariant during variation of a property, while actual 
coordinates mostly vary in any case. This is a reason why energy quantities can be a basis for symmetry and equilibrium 
description. Especially when H is time dependent and describes change, or when it describes invariance as the absence of 
change, a time derivative depending on time intervals seems more appropriate then a time derivative depending on a time 
moment. Equilibrium, similarly, needs time intervals rather than a time moment to be defined properly, since it only exists 
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where one is in equilibrium with another one. Indeed, Hamilton’s principle of least action is also defined for a time 
interval: the time interval [t1, t2]. Arnold mentions the criterion for an equilibrium x0 of a system dx/dt = f(x): x(t) = x0 for 
all t is a solution of this system, i.e. f(x0) = 0, [Arnold, 2]. One can say equilibrium means a quantity exists that expresses 
invariance and symmetry as being the change of several other quantities. The formulation of equilibrium with the mean 
velocity theorem is crucial because it describes the interdependence of one moment values of a function with a certain 
interval average of this same function. 
 
4. Interval Derivatives and Intervals 

The definition of a comparative derivative of a quantity or function, say f(x), to an interval ∆X	that	 includes	the	
parameter x(t) for some specific t belonging to ∆t	 =	 [t1,	 t2],	 using	 “	 	 “	 notation	 to	 emphasize	 the	 difference	 with	 a	
traditional derivative to the parameter x for the specific x = x(t), is: 
1)  “df/dx”|∆X	=	<	df/dx	>|∆X	=	∫	(df/dx)	dx	(1/|∆X|) 

Equation 1) depends on the interpretation of the relevant “mean velocity” graph as a comparison between average 
and slope line. This comparison is similar to an equilibrium definition for the slope line and it liberates the derivative from 
a one value limit to an interval in equilibrium. With < … >|∆X	is	meant	the	average	for	the	interval	∆X	=	[x(t1),	x(t2)]	where	
t is a one-dimensional parameter for simplicity. x(t) belongs to the interval ∆X	and	∆X	 in	 turn	 should	 include	 x(t).	 For	
convenience also is defined the interval ∆Y(y(t))	=	[x(t1), y(t)] for any y(t) belonging to ∆X.	For	y=x(t2)	there	is	∆Y(y)	=	∆X	
= [x(t1), x(t2)]. Also |∆X	|=	|x(t2)	– x(t1)| = |x(t2)| because the value of x(t1) is quite arbitrary, and one may organize that 
x(t1) = 0. At least x(t2) > x(t) The interval ∆X	 is	 interpreted as the domain for the function f(x). The following 
approximation is valid for all y belonging to ∆X:	“df/dx”|∆Y	=	“df/dx”|∆X	(y/x(t2))	and	thus	<	df/dx	>|∆Y		=	<	df/dx	>|∆X	
(y/x(t2)). This means that any function f allows for a linear approximation for the complete interval ∆X.	 A	 linear	
approximation might be positive or negative of sign depending on f(x) being increasing or decreasing. For all x belonging 
to ∆X	and	for	all	increasing	positive	f(x),	this	approximation	means	the	evaluation	of	f(x)/x ≈	“df(x)/dx”|∆X	or	written	as	a	
linear equation f(x) ≈	“df/dx”|∆X	x,	while	assumed	is	f(x	=	0)	=	0.	For	decreasing	positive	functions	f(x),	“df(x)/dx”|∆X	≈	- 
f(x)/x, and similarly for negative functions. For the space coordinate q(t) one finds “dq/dt”|∆t ≈	+/- q/t, for a positive, 
increasing respectively positive decreasing q and for ∆t	=	[t1,	t2].	From	“dq/dt”|∆t	≈	- q/t follows the approximation [1/t, 
q] = -2q/t and [t, q] = -2qt and  
2a) “dq/dt”|∆t	=	1/2	[1/t,	q(t)]	 

and this commutation bracket relation is inferred to be a valid equation for all functions and for all t belonging to 
∆t,	not	only	for q(t), valued at “equilibrium” being the equilibrium from the “mean velocity theorem” for ∆t.	The	following	
definition for a comparative derivative is inferred to be valid for any interval ∆t	=	[t1,	t2]: 
2b) “df/dt”|∆t	=	1/2	[1/t,	f(t)]|∆t	=	1/2	(1/t1	f(t1)	– f(t2) 1/t2) 

Writing “comparative” commutation brackets in this way suggests a similar definition with 1/2 [t, f(t)]|∆t	=	1/2	
(t1f(t1) – f(t2) t2), being the comparative integral of f(t). With equations 1) and 2a/b) derivatives to an interval ∆X	or	∆t	is	
defined as an alternative to traditional time moment derivatives at x = x(t) at time moment t. Equation 2b) can also be 
evaluated for t1 = 0 due to the linear approximation above. On the right side, still time moment functions remain. These 
definitions are independent of the traditional derivative and finding a function f(t) by traditional integration does not 
provide a solution for a comparative derivative equation immediately. However, from the above it can be argued that a 
positive, decreasing, function q(t) is proportional with 1/t. With the comparative derivative, and the above approximation 
as a comparative method, the following equation is directly derived for the Legendre transforms f and g for which g = 
p.x(p) – f:  
3) “df/dx”|∆X	=	<	df/dx	>|∆X	=	3/2	p	– 3 < g >|∆X	1/x(t2) 

Equation 3) does not replace the Legendre transform relation for f and g. On the contrary, it defines the 
comparative derivative for f(x) to an interval ∆X,	while	the	Legendre	relation	g	=	p.x(p)	– f remains intact. Thus equation 3) 
defines “df/dx”|∆t	 as	 a	 derivative	 to	 an	 interval	 while	 again	 the	 right	 side	 of	 the	 expression	 contains	 time	 moment	
dependent functions. This occurs because the interval ∆X	 and	 the	 specific	 time	moment	 coordinate	 t	 are	 related.	 The	
progress with equation 3) is in the application of the derivative to an interval ∆X,	which	itself	depends	on	the	time	interval 
∆t=[t1,	t2].	To	avoid	infinite	regress	chosen	is	to keep p and x(t2) as time moment parameters included in equation 3). In 
this way an interval does not have an interval as border. The comparative derivative definition agrees with a theorem 
[Arnold, 2] concerning the equal value of averages of a function for a t interval and a q interval. Following the usual 
identification f = L and g = H the traditional derivative of the Lagrangian dL/dx = p at x(p) while the comparative derivative 
“dL/dx”|∆X	for	interval	∆X	can	differ	from	p,	because	of	the	liberation	of the derivative from a one value limit to an interval 
equilibrium. With equation 3) the traditional Lagrangian equilibrium equations and equilibrium itself become time 
interval dependent.  
 
5. Time Interval Averages 

Even for H time dependent, the Lagrangian L and the Hamiltonian H are assumed to remain the Legendre 
transform of each other. With f = L and g = H and x the comparative time derivative of q, and writing H = H0 + ∆H(t),	to	
accompany equation 3) one finds: 
4)  L(x(p)) + H(p) = 2T + ∆H	=	p.x	=	p.“dq/dt”|∆t 

Both p and x are functions of t and related to the time interval ∆t	=	[t1,	t2]	as	in	paragraph	4).	Just	as	equation	3)	
also equation 4) contains both time interval and time moment parts. For now, the time moment t and time interval ∆t	
remain unspecified. Assumed is that the mass m is a constant in time and that T is quadratic in p. T can also be understood 
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to be quadratic in dq/dt in some cases and for a Newtonian system these definitions are the same. Consider the function G* 
= p.q, [Goldstein, 1]. Following Goldstein’s description with a generalized force k there is < dG*/dt >|∆t	=	p.q	/t	and	<	k	>|∆t	
= (p(t2) – p(t1)) 1/|∆t|	with	k	=	“dp/dt”|∆t,	when	applying	comparative	derivatives,	and: 
5)  < 2T >|∆t	=	<	k	>|∆t.q	- < k.q >|∆t	 
When one writes H = H0 + ∆H(t)	the	following	relations	are	found: 
6a) < ∆H	>|∆t	=	<	d(p.q)/dt	>|∆t	- p.q/t 
6b) < 2T >|∆t	+	<	k.q	>|∆t	=	p.q/t	- < ∆H	>|∆t 
Equation 6) can be compared to the usual virial equation < 2T >|∆t	+	<	k.q	>|∆t	=	0.	For	a	Newtonian	system	in	equilibrium 
both p.q/t and < ∆H	>|∆t	is	zero,	for	other	systems	in	equilibrium	with	time	dependent	H	these	expressions	turn	out	to	be	
non zero however equal. Parameter p depends on H and L through the Legendre transformation equation 4). For a time 
dependent H the traditional definition of V with k = - ߲V/߲q might have to be changed. The definition of T quadratic in p 
will be followed in the remaining. 
 
6. Time Coordinates and Time Elements 

Equation 1) that defines comparative derivatives to an interval asks for a specification of what is an interval, 
especially for derivatives to time. One assumes that a) time is measured with counting, b) there is a present moment now, 
without knowing what that means yet, c) for the future one counts time further into the future from some moment in the 
future, however for the past one counts differently: one counts rather from some moment in the past. Whereas the future 
goes further from us now, away from us now, the past is coming towards us now, nearer to us. d) time is linear and there is 
only one-time coordinate that does not allow for higher dimensional properties like turning. Traditionally time description 
with time moments is 0-dimensional: the time moment now is the same everywhere all the time, even when measured or 
counted differently at different places and it is not possible to change, to “go”, to another time moment independent of 
others like is possible in space. Time intervals discussed here are 1-dimensional closed intervals that can overlap. To make 
this more precise: think of the moment now as a yet undefined time belonging to a time interval comprising parts of both 
the future and the past. Considering the future one counts time with element (i) positively from some time, say: (n) + (i = 
0), to a time ta in the future: ta = (n) + (i) > 0. When considering the past, one counts time with element (i) positively from 
some time in the past, say: (-n) + (i = 0), to a time tb in the past: tb = (-n) + (i) < 0. These definitions specify time for the 
future and the past respectively, by counting both with the same +(i), with the i included in (i) only a positive real number 
or zero. For both two-time elements is used the ( ) notation and the sum of these (n) and (i) elements added together is by 
definition the time coordinate t, which remains however 1-dimensional. A past time similar to the future time with +(n) 
includes +(-n), with the minus sign contained in +( ) to clarify it is forward oriented, even for negative n, and it is combined 
with forward counting time with +(i). A time interval [tb, ta] emerges with parts of the past and the future both. There is 
with these definitions a symmetry and an anti-symmetry between past and future. A time interval could also be defined 
with the symmetric choice ta = +(n) + (i) and tb = -(n) - (i): an interval [tb, ta] would then become [-ta, ta] and the past is 
then counted backwards with -(i). (-n) and –(n) are not the same, the latter one being backwards oriented, and to be 
combined with –(i) while (-i) is not possible. The above assumption c) means the element (n) is symmetric and the 
counting element (i) anti-symmetric for past and future: the interval [tb, ta] equals [(-n) +(i), (n)+(i)]. A past time and a 
future time can be defined independent of each other with different (n) for past and future or counting with different (i) 
for past and future. In this article the interval [tb, ta] is defined such that ta and tb are interdependent through (n), (-n) and 
(i). Assuming the counting element to be the same (i) for both past and future agrees with the anti-symmetric part of time 
experience. From the discussion of time element properties in paragraph 8) it follows that time coordinates do not 
commute. 
 
7. The Time Dependent Hamiltonian 

The time dependent part ∆H	of	the	Hamiltonian	H	is,	for convenience, written in the form: 
7)  ∆H	=	exp	(- (c.q)F) G exp ( + (c.q)F) 
F and G are functions independent of the space coordinates q. The vector c is added with the dimension of q-inverse to 
make (c.q) a scalar product. In this description not yet q as a function of t, meaning an equilibrium solution q = q(t), is 
determined. Eventually when specific equilibrium equations for when H time dependent are applied equilibrium solutions 
∆H	are	found	from	these.	At	the	end	of	this	paragraph	with	the	equilibrium	solution	q(t)	from	paragraph	4)	these	solutions	
for ∆H	 and	 also	 the	 equilibrium equations are found confirmed. The usual operator writing convention is: to the left 
includes to the right. In this case, rather time dependent functions are present, however still the writing order has to be 
cared for, because q and t do not always commute. All function parts relate to the same time moment t and ∆H	 is	 still	
completely time moment dependent. H and ∆H	are	energy	quantities	just	like	H0	and	this	means	both	should	have	a	real	
number value. ∆H	seems	the	same	as	the	standard	way	to	describe functions when for instance calculating exponents of 
matrices. Similar expressions are applied extensively when representations are studied and also for gauge 
transformations. However ∆H	and	equation	7)	describe	an	energy	quantity	as	a	function	of	time,	not considered are field 
theories or operators.  

The unspecified equation 7) has meaning as a trial expression, chosen for its simplicity: below, from the definition 
of the equilibrium equations for a time dependent H with equations 10) and 11), found are solutions for F and G and thus 
for ∆H.	Some	considerations	for	clarity	are:	The	exponent	function	on	the	right	is	accompanied	by	its	inverse	on	the	left	to	
achieve linear space coordinate system transformation invariance, i.e. ߲∆H/߲q = 0 when q changes accordingly and t 
remains constant, at least when q and t commute and ∆H	 is	 time	 independent.	 For	 ∆H	 not	 time	 independent	 this	 is	
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achieved when F remains independent of both t and q and commutes with t. The writing order of equation 7) resembles 
equivalence transformation writing order for (matrix) functions which is the reverse of unitary transformation writing 
order for operators. This suggests the interpretation of the q part of equation 7) for ∆H	to	be	a	coordinate	transformation	
along q and –q of the t part. Regarding dimensions, G, or the t part of ∆H,	 is	 like	 the	 comparative	 derivative	of	 a	 time	
dependent function similar to the constant of Planck h. In paragraph 9) such a function, h+, is introduced that differs from h 
only when H ≠	H0.	Indeed	for	a	e.m.	radiation	measurement	event	with	initially	a	constant	energy	E	=	hν	there	is	found	E	=	
h+/∆t	for	time	dependent	wave	packet	collapse. 

Because the q and t parts of ∆H	can	be	separated	due	to	the	above	F	and	G	properties,	specific	free	infinitesimal	
transformations for q or t independent of each other are possible. Then [Arnold, 2] from equation 7) and applying the 
solutions q(t) from paragraph 4), it follows, when ∆H	=	∆H(q(t),	t),	∆H	can	also,	like	q(t),	be	written	being	equal	to	G(t	+	D)	
= ∆H(q	=	0.q0,	t	+	D),	that	 is:	∆H	evaluated	at	a	time	t	+	D	different	from	t	while	q	=	0.q0	remains	invariant.	A	possible	
singularity for G at t = ts within ∆t	is	avoided	when	D	is	chosen	such	that	∆(t	+	D)	does	not	includes	this	singularity.	q(t)	
can be evaluated with the results of paragraph 4) and D follows from q(t). A ts = 0 singularity exists for the solution for G 
introduced below, however this is not easily considered as a possible moment now since time is not reversal symmetric 
following the definition of time coordinates with elements (n) and (i) in paragraph 6). When writing ts = 0 meant is ts = 
0.t0, while the t0 is left out. With “df/dt“|∆t	 =	 1/2	 [1/t,	 f]|∆t	 equal	 to	 a	 comparative	 derivative	 (paragraph	 4),	 this	
comparative commutation bracket result is the same as the Poisson bracket [f, G_] that defines derivatives with the time 
transformation generator G_, however now including the partial derivative. 

When one considers a function v as a generator of infinitesimal contact transformations and applies Poisson 
brackets, one can write for any function u, [Goldstein, 1], [Arnold, 2]: 
8)  δu = ε [u, v] + ε߲u/߲t* 
δ	means	the	δ	variation	and	ε	means	the	variation	dt*	of	the	parameter	t*	corresponding	to	v.	One	may	choose	v	equal	to	
the	Hamiltonian	H,	when	H	is	time	independent,	meaning	the	system	is	Newtonian	with	H	=	H0.	Then	ε,	the	time	parameter	
variation dt*, is equal to dt and v is the generator of time transformations G_ = H0. Also like before (equations 6) < ∆H(t)	
>|∆t	=	(p.q)	1/t	=	0	in	this	case.	This	is	not	new.	Time	dependence	of	H	can	be	included	in	∆H	writing	H	=	H0	+	∆H.	In	this	
case v still equals the generator of time transformations	G_,	and	still	ε	=	dt*	=	dt,	however	v	is	not	equal	to	H0	anymore.	
The above transformation equation 8) with u = H(t), when applying the comparative derivative introduced with equation 
1), reduces to: 
9) “d∆H/dt”|∆t	=	[∆H,	v]	+	߲∆H/߲t 
Compared with	transformation	equation	8)	there	is	a	change	of	the	placing	of	the	parameter	variation	ε	=	dt:	δ∆H	=	[∆H,	v]	
ε	+	߲∆H/߲t*	ε.	The	placing	of	time	parameters	is	not	trivial	since	they	are	assumed	to	not	necessarily	commute,	also	with	
other parameters. Equation	8)	applies	 the	 traditional	formulation	with	ε	 to	 the	 left,	 and	for	 traditional	commuting	 time	
moment variables this is the same	as	with	ε	to	the	right.	The	right	side	placing	of	ε	is	in	agreement	with	the	definition	of	
averages with equation 1) where 1/|∆X|	=	1/(x(t2)	– x(t1))	is	placed	on	the	right	side	as	well.	Since	v	=	G_	and	ε	=	dt	for	
both time dependent or time independent H, the following equations 10) and 11), being just those for comparative 
equilibrium when H = H0 that are the same as the Lagrangian equilibrium equations for H = H0, are assumed to remain 
valid for comparative equilibrium when H = H0 + ∆H	and	time	dependent	and	with	v	identiϐied	with	H	even	while	H	≠	H0.	
With these assumptions one finds comparative equilibrium equations 12) and 13) for ∆H: 
10)		δqi	=	qi(t+dt)	– qi(t) = dqi = ߲v/߲pi	dt	,				δpi	=	pi(t+dt)	– pi (t) = dpi = - ߲v/߲qi dt 
11) “dq/dt”|∆t	=	߲v/߲p,    “dp/dt” |∆t	=	- ߲v/߲q 
12) “d∆H/dt”|∆t		=	߲ ∆H/߲q “dq/dt”|∆t	+	߲∆H/߲p “dp/dt”|∆t	+	߲∆H/߲t 
13) “d∆H/dt”|∆t	= - [“dp/dt”|∆t,	“dq/dt”|∆t]|∆t	+	߲∆H/߲t 
The brackets in equation 13) are commutation brackets. Equation 13) can be derived from the results of paragraph 5), 
independent of the assumptions above, however depending on the results from paragraph 4). A solution of equation 12) or 
13) is found with the functions F = i and G = h/t. Here i is just the imaginary number unit. ∆H	can	be	written	in	two	ways: 
14a) ∆H	=	exp	(	- (c.q)i) h/t exp( + (c.q)i) 
14b) ∆H	=	h/t	(1	+	(c.q)^2		+	…) 

Chosen is to keep intact the order of the different parts of ∆H	since	time	parameters	do	not	always	commute as 
argued before in paragraph 6). Therefore, the exponent version expression 14a) makes sense, being not simply equal to 
h/t. For F and G matrices this can be different. One can write the exponents within ∆H	as	Taylor	series	and	one	finds	the	
series version expression 14b) with (c.q)^2 being the lowest order term in (c.q) assuming ∆H	and	the	vector	c	are	space	
orientation invariant. The series version for ∆H	gives	real	values	as required. This can be proven for the exponent version 
too, considering that when q and t do commute there is ∆H	=	G	and	both	versions	are	trivially	the	same.	 
Because	(c.q)	can	be	equal	to	a	multiple	n	of	2π	for	some	choice	of	c(t)	for	q	=	q(t),	for	this q(t) the series version 14b) for 
∆H	is	valid	and	exactly	the	same	as	the	exponent	version	because	then	all	exponents	and	their	Taylor	series	are	equal	to	1.	
Now assume the relevant time interval ∆t	=	[tb,	ta]	includes	borders	with	t	=	ta	and	t	=	tb	and	c is chosen such that (c(t). 
q(t))	=	n(t)	2π	for	these	q(t)	and	t.	For	any	t	belonging	to	the	interior	of	this	time	interval,	the	series	version	is	still	correct. 
One applies the mean velocity theorem to assert that the transformation from the t domain, say the interval ∆t,	to	∆H(t)	in	
the above approximation, is continuously connected along the whole t domain interval. The theorem confirms that there is 
at least one x in the domain of any function f, such that for < f > the average of f, there is < f > = x. When there is only one 
such x, necessarily this x belongs to the interior and not to the border of the domain of f. When there are two such x at least 
one of these two belongs to the interior of the domain of f, two such x in the border would contradict < f > = x. When three 
or more such x exist, then at the most two belong to the border, and at least one belongs to the interior of the domain of f. 
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Thus, in any case at least one such x belongs to the interior of the domain of f. This means the transformation from the 
interior of ∆t	to	∆H(t)	is	continuously	connected	to	this	transformation	from	the	border	of	∆t	to	∆H(t).	For	this	reason,	the 
series and the exponent version of ∆H	are	assumed	to	be	equivalent	following	standard	topology. 
When G_ is the generator of time transformations, for equations 11) propose the following solutions ߲G_/߲p = “dq/dt”|∆t	=	
- q/t, and thus G_ = - (p.q) 1/t = < ∆H	>.	There	is	߲G_/߲q = - “dp/dt”|∆t	=	+	p/t.	These	solutions	mean	q	is	positive	and	
decreasing and p is negative and increasing following the description in paragraph 4) with “dq/dt”|∆t	 =	 - q/t and 
“dp/dt”|∆t	=	- p/t. Following paragraph 5) there is ∫∆Hdt	1/∆t	=	(p.q)	1/t	and	thus	∆H	=	“d(p.q)/dt”|∆t		=	- (p.q) 1/t = G_. 
With the above comparative derivatives of p and q, and taking care of the proper commutation bracket relations with t, it 
follows: 
15a) “d∆H/dt”|∆t	=	[∆H,	G_]	+	߲ ∆H/߲t = ߲G_/߲t = G_ 1/t ≠	0	 
The brackets are Poisson brackets in this equation. It is possible to write ∆H	and	its	comparative	derivative in terms of p, q, 
and t, applying commutation brackets, without reference to any solution for ∆H	from	F	and	G.	From	“d(∆H)/dt“|∆t	=	∆H/t	=	
- (p.q)/t^2,  and “d(∆H)/dt”	 |∆t	 =	 (p.q)/t^2	 +	 p[1/t,q]|∆t	 1/t,	 it	 follows	 that	 is	 required	 [1/t,	 q]	 |∆t	 =	 -2 q/t. This 
commutation relation and similar ones were derived in paragraph 4). This is an independent confirmation for the results 
of paragraph 4) and for the inference “df/dt” |∆t	=	1/2	[1/t,	f]|∆t,	defined	with	equations	2),	and	for	the	time	dependent	H	
equilibrium assumptions equation 10) and 11). It follows: 
15b) “d(∆H)/dt”|∆t	=	“d(1/2	p[1/t,	q]|∆t)/dt”|∆t	=	1/2	p[1/t,	q]|∆t	1/t	 
Always ߲G_t/߲t = 0, however ߲G_/߲t ≠	0.	“d∆H/dt”|∆t	is	non	zero	depending	on	[1/t,	q(t)]|∆t	≠	0	while	these	both	are	time	
interval ∆t	 dependent.	 Notice	 in	 relation	 to	 equation	 13)	 that	 always	 ∆*p.∆*q	 ≥	 h	 for	 ∆*	 variances,	 following	 the	 qm	
uncertainty relations, however this will be discussed in paragraph 9). In conclusion, the generating function G_ does not 
leave H = H0 + ∆H(t),	or ∆H(t)	itself,	invariant,	meaning	the	following: 
16)  The time transformation is not canonical for a time dependent Hamiltonian. 
 
8. Time Coordinates, Once More, and Time Intervals and the Time Interval Dependent Hamiltonian 

Consider the following transformation of t, applying the exponent version of ∆H	=	exp	(	- (c.q)i) G exp( + (c.q)i): 
∆H(q	=	0.q0,	t)	=	G(t)	equals	∆H(q(t),	t’)	for	t’	the	transformed	of	t.	This	type	of	free	transformation	was	discussed	before in 
relation to equation 7). The series version of ∆H	 from	 equation	14)	 supports	 this	 transformation	with:	 1/t’	 =	 1/t	 (1	 - 
(c.q)^2) and, by including a minus sign and with the positive and decreasing equilibrium solution q = q(t) derived in 
paragraph 4), defined is transformation A:   
17)  A: tb = - (1 - (c.q(ta))^2)^(-1) ta = - (1 – (c.q0)^2 (t0/ta)^2)^(-1) ta 
Just this reduced transformation A: tb = tb(ta) is applied to define the interval [tb, ta] = [tb = tb(ta), ta]. tb is part of the 
past and ta is part of the future due to the minus sign. The meaning of this definition in terms of time elements (n) and (i) 
is discussed in alinea b) below. It is not meant that ∆H(tb)	=	∆H(ta)	for	all	ta	and	that	H	remains	time	independent.	With	
this definition the comparative derivative with equation 1) acquires the specific time domain ∆t	=	[t1,	t2]	=	[tb,	ta]	for	∆X.	
The time moment now is not considered. To derive comparative derivatives with this interval ∆t	 is	 assumed	 to	 be	
approximately justified with regard to the original interval ∆Y	=	[0,	y]	encompassing	x(t).	Recalling	equation	13)	one	finds	
for H = H0 + ∆H,	applying	comparative	derivatives	to	∆t	=	[tb,	ta]	=	∆tbta	and	commutation	brackets: 
18) “d∆H/dt”|∆tbta	=	∆(∆H)/∆t|∆tbta	=	- [“dp/dt”|∆tbta,	“dq/dt”|∆tbta]|∆tbta	+	߲∆H/߲t  
This is the basis for defining a new function ∆H2,	with	the	dimension	of	energy	like	∆H: 
19a) ∆H2(tb,	ta)	=	- ∆(∆H)/∆t|∆tbta	∆tbta	=	- exp ( - (c.q(ta))i) h/tbta ∆tbta	exp(	+	(c.q(tb))i)	 
∆H2 depends only on ∆tbta	and	its	borders	tb	and	ta.	This	is	possible because the q dependent part and the t dependent 
part appear separated in ∆H.	This	suggests	the	following	definition	for	comparative	derivatives	for	any	function	h(q(t),	t)	
with separated parts for q and t like for ∆H: 
19b) h2(∆tbta)	=	- “dh/dt”|∆tbta	= - 1/2 [1/t, h]|∆tbta 
Higher order comparative derivatives can be considered as well. The commutation bracket result from equation 19b) is 
the same as the exponent result of equation 19a) for h = ∆H	and	h2	=	∆H2/∆t,	by	application	of	equations	2)	and	of	the 
results of Appendix A). The function h+ introduced later on in paragraph 9) can be inserted as well. With h = h+/∆t	one	
finds similarly h = ∆H	=	h+/∆t	and	h2	=	∆H2/∆t	=	- 2 h+/(∆t)^2	from	equations	22).	A	function	h0	emerges,	that	resembles	
h+, with 1/2 h = - 1/2 [1/t, h0]|∆t.	This	also	means	comparative	derivatives	of	h0	can	be	meaningful	and	non	zero	even	
when h0 is a constant, while ∆t	has	non	zero	measure,	i.e.	tb	≠	ta.	This	is	a	purely	time	interval	dependent	result.	A	similar 
result with traditional derivatives would be a contradiction. A constant function h0 leads to some difficulties related with 
the mean velocity theorem, and needs interpretation: the specific equilibrium solution q = q(t) relates tb and ta. For H = 
H0, q and t commute and there is ∆H	=	G	and	G(tb)	=	G(-ta) meaning tb = -ta and thus q(t) = 0.q0 for all t. From this value of 
equilibrium solution q it follows tb and ta are infinite with opposite sign (this is a reason for difficulties with the mean 
velocity theorem) and the comparative derivative to ∆tbta	of	h0	indeed	is	zero,	h	=	∆H	=	0,	as	expected	from	H	=	H0,	while	
then h0 equals a possibly finite constant 2 h+/∆t	 ta	 =	 h+	 that	 equals	 the	 constant	 of	 Planck	 for	 H	 =	 H0.	 In	 this	way	
encountered are time intervals [-ta, ta] that are symmetric and infinite for H time independent and time intervals [tb, ta] 
that are asymmetric and finite for H time dependent. 
The description of time coordinates is continued with the following properties: 
a) Time is regarded as part of reality: the value of (n) and (i) should be real numbers, however with dimension of time. In 
the following a difference between – (n) and (-n) is attended to. t+ is defined to be in the future with t+ = (n) + (i)>0.t0, 
andt- in the past with t- = (-n) + (i)<0.t0, such that: 
20a) t+ - t- = 2(t+ - t0) 

http://www.theijst.com


 THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE               ISSN 2321 – 919X www.theijst.com 

 

7  Vol 8  Issue 5                       DOI No.: 10.24940/theijst/2020/v8/i5/ST2003-035                    May, 2020              
 

 

20b) t+ + t- = 2t0 
20c) (-n) = - (n) – 2(i) + 2t0 

Equation 20c) is the result of the other two definitions, equations 20a/b). The measure of the interval [t-, t+] is 
“twice” that of the interval [t0, t+] or the interval [t-, t0]. This defines the relation between the time interval [t-, t+] and the 
time t0, that is an indication for the time equilibrium of the interval. t0 however cannot be interpreted as the time moment 
now. From addition of the equations 20a) and 20b) one understands that 2t+ = 2t+ and t- - t- = 2t0 – 2t0 = (2-2)t0 = 0.t0, 
with 0.t0 interpreted as the time unit for addition and elements can be transported to the other side of the equal sign when 
multiplied with -1. Applied is that for 1.t0 exists the addition inverse - 1.t0. Still, addition of non equal time elements 
depends on the properties of their (n) and (i) parameters. 
1.t0 = t0 is interpreted as the time unit for multiplication. Time variables do not commute in most cases. t0iv = 1/t0 is the 
multiplication inverse for t0 with t0.t0iv = 1. A time multiplication inverse however is itself not a time coordinate. The 
product of two or more-time elements or variables left of the equal sign can only result in a product of a similar number of 
time elements or variables at the right side of the equal sign. 

When writing equations often variables are transported from one side of the equal sign to the other side, and then 
inverses are necessarily occurring. This means one value has to be divided by another value within expressions. Special is 
the multiplication unit t0: t.t0 = t for time t and t0 the multiplication unit can be correct, regarding dimensionality, when 
the product is interpreted as vector product while time t, rather than being a vector in higher dimensional space, remains 
the sum of two elements (n) and (i) together being one coordinate in a 1-dimensional time space. Higher dimensional time 
coordinate spaces are imaginable, when taking care that time remains without unreal properties. 
b) Following equation 17) with t+ in the future:  t+ > 0.t0, t- is defined to be equal to t+’ = - ( 1 – (c.q0)^2 (t0/t+)^2 )^(-1) 
t+, and thus t- < 0.t0 is valid for (t+)^2  > (c.q0)^2 t0^2. This definition means that t+ = (n) + (i) > 0.t0, with A transforms to 
t- = (-n) + (i) < 0.t0 and from t+ = ta it follows t- = tb. Together with equations 20) that specify the relation between t+ and 
t- and t0, transformation A defines t0: t0 = (n = 0) + (i = e) = (0) + (e) with e chosen any real positive number. t0 being the 
time unit for multiplication means: t.t0 = t0.t = t. There is t+.t0 = t+ = (n) + (i). For the special scale(e) = (i) and with t.(n = 
0) = (n = 0).t = 0.t, this means t+.t0 = (n)(i) + (i)(i) = (n) + (i) and also t0.t+ = (i)(n) + (i)(i) = (n) + (i). Since t+.t0 = t0.t+ 
there is [(n), (i)] = 0 and (n)(i) = (i)(n) = (n) and (i)(i) = (i). In general, in any product all (n) and (i) elements are present. 
However, when accepting q(n) = (q.n) and q(i)= (q.i) for all non negative real numbers q the above multiplications remain 
valid within the t0 = (n = 0) + (i) scale. The following properties result as well: t-.t+ = t+.t- = 1/2 (t-^2 + t+^2) and (t-/t+) 
(t+/t-) = 1. For t coordinates other than t+ and t- = t+’ and for their commutation properties one has to start from different 
(n) and (i) and derive commutation values and other properties for all t’s independently.  
 
9. The Order of Time Dependent Quantities and the Constant of Planck 

The expression for “d(∆H)/dt”|∆t	from	equation	13)	is	rewritten	with	∆	variations	by	defining	the	variations equal 
to differentials, with “d∆H/dt”|∆t	=	∆(∆H)/∆t,	and	by	applying	commutation	brackets: 
21)  ∆(∆H)/∆t	=	- [ ∆p/∆t,	∆q/∆t	]	+	߲ ∆H/߲t = (∆p.∆q	- ∆q.∆p)1/∆t^2	+߲∆H/߲t  

To derive this result, one applies the commutation brackets for q and t from paragraph 4) and equations 11). In 
agreement with the above interpretation that time coordinates do not commute, ∆	variations,	because	they	are	rewritings	
of time interval derivatives, are considered to be non commuting just the same and their order should be taken care of: for 
their products introduced are the new quantities hpq = ∆p.∆q		and	hqp	=	∆q.∆p.	These	quantities	are	comparable	to	and	
have the same dimension as h, the constant of Planck, as it appears in the standard uncertainty relation ∆*p.∆*q ≥	 h,	
[Sakurai, 11], where ∆*	means	a	variance.	hpq	and	hqp	depend	on	the	writing	order	of	∆p	and	∆q	and	the	scalar	product	
value of these variations will change when this order is changed. The relation: hpq – hqp = 0 only when H = H0 and vice 
versa, can be derived directly, from equations 6). All ∆*	variances	should	have	the	same	value	as	∆	variations,	 for	which	
will be given further arguments below. Apart from h_ = hpq – hqp one can define also h+ = 1/2 (hpq + hqp). These 
quantities seem quite arbitrary;however, it is clear that h+ reduces to the constant of Planck h and h_ reduces to zero when 
H is time independent and equals H0. 

A second uncertainty relation is: ∆*E.∆*t	≥	h	(often	written	as	∆*E.∆*t	≈	h),	with	h	again	the	constant	of	Planck,	
usually with ∆*E	and	∆*t	 in	this	order	[Merzbacher,	12].	When	E	=	p.p/2m	is	 just	the	kinetic	energy	T,	and	“dE/dt”|∆t	=	
∆E/∆t	=	1/2	(∆p/∆t.∆q/∆t		+	∆q/∆t.∆p/∆t)	for	a	Newtonian	system	with	p/m	=	∆q/∆t,	then	∆E	=	- h+/∆t	=	- h/∆*t	=	- ∆*E.	
The relation ∆E	=	 - h+/∆t	 is consistent	with	 the	De	Broglie	 relation	p	=	hk/2π	 for	∆E	=	 - ∆*E	and	∆t	=	∆*t.	For	a	 time,	
dependent H ≠	H0,	with	h+	≠	h,	still	∆E	=	- h+/∆t	is	regarded	valid. 

In order to agree with the above qm relation ∆*p.∆*q	≥	h	for	wave	packets,	variances	and	differentials should have 
equal value: this follows from including p/m = ∆q/∆t	 in	 ∆E/∆t.	 Indeed,	 for	 the	 quantities	 E,	 q,	 and	 t	 in	 the	 above	
description there is no mention of variances, instead ∆	is	 interpreted	as	part	of	a	derivative,	 i.e.	 as	a	∆	variation.	While 
relating the measurement of ∆t	and	∆q	to	∆*p,	one	has	to	interpret	also	∆*p	as	part	of	a	derivative	with	∆*p	=	∆p.	All	this	
follows from the narrative that a stationary wave packet can somehow be “observed” during passing, as is argued when 
deriving these uncertainty relations [Sakurai, 11]. 

Due	to	the	Einstein	relation	E	=	hν,	a	stationary	state	wave	packet	allows	for	a	“nearly”	precise	E	for	each	natural	
frequency	ν,	and	stationary	means	there	is	time	“enough”	(meaning	∆t	large)	for	the	variance	of	E	to	be	reduced	“enough”,	
[Merzbacher, 12]. However, the event of wave packet collapse is not a stationary state event. The value of the variance ∆*E	
not necessarily has to be small compared to E. Below, applied is the simple equivalence E = - ∆E	 =	 - ∆T	 for	 the	
measurement of starlight radiation with	 frequency	 ν,	 arguing	 that	 the	 collapse	 of	 the	wave	 function	 is	 complete	with	
E(before)	=	hν	=	V(after)	while	no	work-function is considered. Then the problem of the value of the variances disappears. 
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All variances from now will be interpreted as variations. Whereas h+ resembles a variation on the “average” constant of 
Planck h, the reason to exist for h_ is commutation bracket [∆p,	∆q]	being	different	from	zero	if	only	to	the	slightest	when	H 
is time dependent and ∆H	≠	0.	One	can	indeed	verify	directly	that h_= hpq – hqp is not equal to zero for a time dependent H 
from equations 15). 
When one agrees that E = T = - ∆E	=	- ∆T,	then	∆E	=	∆T	<	0	and	E	=	h+/∆t	for	a	positive	kinetic	energy	T	while	variances	
and variations differ in sign. Then hqp can be identified with ∆T.∆t	for	the	kinetic	energy	T.	The	identification	of	hpq	with	- 
∆V.∆t	follows	from	the	definition	of	∆V	from	the	action	– k.∆q	for	a	generalized	k	=	∆p/∆t. 
22a) ∆H/∆t	=	∆(∆H)/∆t	=	- h_/h+ ∆E/∆t	+	߲∆H/߲t 
22b) ∆(T	- V)/∆t	=	-2 h+/(∆t)^2	=	2	∆T/∆t 
Notice that T(tb) ≠	0	and	V(ta)	≠	0	while	T(ta)	=	V(tb)	=	0,	and	H0	=	T(tb)	=	V(ta),	still	∆T	=	- ∆V.	Leaving	the	total	energy	
H0 invariant is maintained throughout the description with comparative derivatives to time intervals.  
 
10. Time Intervals and the Metric Tensor 

The principle of least action is often applied to derive a relation between kinetic energy T and the metric path-
length ∆ρ	with	 (∆ρ)^2	=	Σij	mij	 ∆qi.∆qj	 for	a	metric	 tensor	mij.	 One	may	 follow	 this	 derivation	 to	 find	 how	 the	metric	
tensor is related to starlight radiation energy. A ∆	variation	means	that	the	end	points	q1(t1)	and	q2(t2)	remain	the	same,	
however the total transit time t2 – t1	may	vary,	in	contrast	to	a	δ	variation	where	the	total	transit	time	remains	constant.	
At the i-th part of the path this does not necessarily involve a different time variation |∆ti|	 for	 each	 i,	 and	 |∆ti|	 can	 be	
assumed to be the same for all i. For a ∆	variation	with	end	points	q	invariant	defined	is	|∆qi|/|∆ti|	=	ci/|∆ti|,	with	|∆qi| = ci 
a constant.	 With	 this	 assumption	 and	 mij	 =	 δij	 for	 space	 symmetric	 in	 all	 directions	 one	 finds	 the	 standard	 relation	
[Goldstein, 1]: 
23) (∆ρ)^2	=	Σi	mij	(ci.cj)	=	Trace(mij)	(ci.ci)	=	2	T/m	(∆t)^2	 

A	metric	tensor	mij	=	δij	is	only	valid	for	Cartesian	space	coordinates. To describe 4-space a different mij including 
possibly off diagonal terms and time coordinate parts is needed as is usual in GR. In paragraph 12) an energy change 
expressed in terms of ∆H	and	∆H2	is	derived	related	to	the	starlight	energy	Elight	=	hν. Elight is interpreted as a kinetic 
energy	 following	 the	 De	 Broglie	 relation	 p	 =	 h/λ,	 where	 λ	 is	 the	 wave	 length	 of	 the	 starlight	 wave	 packet	 and	 p	 its	
“momentum”. Only for a Newtonian situation with p/m = “dq/dt”|∆t	and	T	quadratic	in	p,	equation	23)	is	directly valid, 
however it may be assumed to be valid in other situations. The ∆t	from	equation	23)	is	the	same	as	the	∆t	from	p/m.	What	
is	new	here	is	that	this	brings	in	direct	relation	starlight	radiation	energy	hν	and	time	intervals	and	the	metric	tensor mij 
for distances and paths. 
24)		hν	=	1/2	m	Trace(mij)	(ci.ci)	(1/∆t)^2	=	1/2	m	Trace(mij)	c-light^2 = 3/2 m (mii) c-light^2 

The constant c-light is the velocity of light. The time interval ∆t	 in	equation	23)	and	24)	refers	to	the	stationary	
situation just before measurement and wave packet collapse, and is different from ∆t	=	 [tb,	 ta]	defined	 in	paragraph	8)	
which is the same as the time interval ∆t	of	the	measurement	event.	Nevertheless,	these	equations	relate	in	principle	time	
intervals with space intervals and are a basis for deriving a 4-space metric and a metric dependent energy like is usual in 
general relativity, now in a qm measurement context. 
 
11. Time Intervals and General Relativity 

In General Relativity metric tensor and distances are related to gravitational energy. Einstein discussed local 
distances with the concept “standard measuring rod” for local measurements within GR [Einstein, 13]. In [Hollestelle, 14] 
the concept “dot” is introduced to describe local places and local distances for which step by step addition is possible 
towards distance measurements beyond locality in GR in a cosmological setting.  

Just like this a step by step method is proposed to measure time intervals beyond the time interval ∆t	=	[tb,	ta].	
Consider transformation B: t’ = (1 – (c.q(t))^2)^(-1) t, similar to transformation A without the overall minus sign.  Where A 
(equation 17) defines the interval ∆t	=	[tb,	ta]	with	tb = - t’(ta), B defines steps from ∆t	to	∆t’:	from	[tb_0,	ta_0]	=	[tb,	ta]	to	
[tb_1, ta_1] = [tb’_0, ta’_0] and continuing with [tb_n, ta_n] = [tb’_n-1, ta’_n-1] until the final time interval ∆t(n	=	n2)	while	
for all n interval ∆t(n)	includes	time	parts	of	the	future	and	of	the	past,	like	∆t(n	=	0)	=	[tb,	ta].	 
For ∆H	at	time	t	the	series	version	is	assumed to be valid with only the lowest terms. From paragraph 4) applied is the 
solution q(t) = q0.t0/t. The result is that ∆H(t’_n)	=	∆H(t_n)	 for	all	n,	when	 transformation	B	 is	written	 in	 the	following	
way, with c = c’, while the sign of t’ remains the same as the sign of t: 
25a) B: (t’_n)^2 = 1/2 (t_n)^2 (1 – (c.q0)^2 (t0/t_n)^2) 

The lowest terms series version for ∆H(t)	 is	only	valid	when	(c.q0)^2	(t0/t)^2	<<	1.	According	to	paragraph	7)	
however	 a	 second	 requirement	 is	 (c	 .q0)	 t0/t	 =	 n	 2π	 =	 N	 with	 n	 a	 certain integer (different than the step defining 
parameter n) at t = ta_n, and likewise for t = tb_n, together the borders of ∆t(n).	When	t	and	t’	are	related	through	B,	 it	
follows c = c’ approximately for N >> 1. Both requirements can be achieved by introducing a scale transformation C for t0. 
C transforms t0 to t0* and this means t* = t t0/t0*, and (c*.q0*) t0*/t* = N (t0*/t0)^2 for (c.q0) invariant with C. When N 
>> 1 there should be (t0*/t0)^2 <<1/N for the series version in lowest terms to be valid at the t0* scale with (c*.q0*)^2 
(t0*/t*)^2 << 1. For this scale ∆H(t*’)	=	∆H(t*)	when	t*’	=	t’(t*)	 is	the	transformed	of	t*	with	transformation	B,	and	this	
relation can be rewritten in the following way: 
25b) B: (t*’)^2 = 1/2 (t*)^2 (1 – (c*.q0*)^2 (t0*/t*)^2) 

Identification t* = t_n means ∆H(t*)	at	t0*	scale	is	saved	as	an	invariant	for	transformation	B.	This	does	not	mean	
∆H(tb_n2) = ∆H(ta_n2),	since	∆H(t)	=	G(t)	at	t0	scale	for	t	equal	to	ta_n	and	tb_n	where	the	exponents	become	equal	to	1	by	
definition of c. At t0 scale the proof that the series version is equal to the exponent version is valid. At t0 scale t’^2 /t^2 < 0, 
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however this t’ relates to the next step with transformation B from ∆t	to	∆t’	and	is	not	relevant	for	the	equal	versions	proof 
that depends on transformation A and ta_n and tb_n. Equation 25b) implies |t*’| < |t*| and by making steps with the 
reverse of B the requirement for|∆t*(n)|	increasing	with	n	i.e.	|∆t*(n)|	- |∆t*(n-1)| > 0 is fulfilled. The time interval ∆t*(n) 
fulfills the requirements to include both past and future parts when (c*.q0*)^2 (t0*/t*)^2 << 1 which is secured by 
definition with transformation C. Reversing transformation B to B(-1) implies creating steps from ∆t*(n)	=	[tb_n,	ta_n]	to	
∆t*(n-1) and further, and these intervals can be re-named and rearranged interchanging n and n-1 etc. From equation 
25b), B(-1) is defined with:  
26)  B(-1): t*(n) = t*’(n-1) = 2^(1/2) t*(n-1) (1 + 1/2 (c*.q0*)^2 (t0*/t*(n-1))^2) 
Then |∆t*(n)|	=	[tb_n,	ta_n]	=	|∆t*’(n-1)| > |∆t*(n-1)| for B(-1) for all n, and re-defined is ∆t*(n	=	n2)	for	B	to	∆t*(n	=	0)	for	
B(-1) to be equal to [tb, ta] which is the original time interval ∆t	at	step	0.	Equation	26)	can	be	approximated	with	t*’	=	
2^(1/2) t* and thus after each step from ∆t*	 the	 next	 interval	 will encompass again times that always fulfill the 
requirement for B(-1), i.e. (c*.q0*)^2 (t0*/t*)^2 << 1. However, t = t* t0*/t0 and the second requirement reads: (c .q0) t0/t 
=	n	2π	=	N	and	after	rewriting:	N	=	(c.q0)	t0/t*	t0/t0*.	When	c	does	not	change, N will be proportional to 1/t*. This means 
with	N	=	n	2π	the	lower	limit	for	N	is	n	=	1	and	for	t*	similarly	(c.q0)	t0	(t0/t0*)	(n	=	1)/2π	and	for	this	t*	the	maximal	time 
interval after the last step is reached.  

Started is from ∆t*(n	=	0)	=	[tb,	ta]	that is a “local” time interval that can be given a measure. With each step the 
interval borders tb and ta are further transformed with B(-1) to result in beyond local however measurable time intervals 
∆t*(n)	with	∆H(ta/b*_n)	=	∆H(ta/b*_n-1). Because of the requirements from paragraph 7) there are lower and upper limits 
for these intervals. These limits on the time interval measure |∆t*(n)|	also	indicate	that	time	interval	dependent	functions	
or quantities, that depend on ∆t*(n)	as	time	domain,	can	be	given	a qm probability interpretation. This is an interesting 
result in its own right. The term “local” is a three-space term, for time intervals the term “timely” is preferable. The 
transformation B(-1) completes the description of the step by step method for the integration of measurements of “timely” 
time intervals to beyond “timely-ness”, considered as a basis for all time interval measurements in General Relativity. 
 
12. Starlight Radiation Energy in a Qm Measurement 

To describe the collapse of a wave packet during a QM measurement of starlight radiation with a time dependent 
Hamiltonian H(t) = H0 + ∆H(t)	started	is	from	equation	14b),	the	series	version:	∆H	(t)	=	h/t	(1	+	(c.q)^2	+	…)	for	t	 just	
before tb or just after ta. ∆H(tb)	 differs	 from	 ∆H(ta)	 when	 wave packet collapse, during a non-stationary state 
measurement event, re-emerges in the time dependence of H during ∆t	=	∆tbta.	For	times	t	<	tb	and	t	>	ta	the	Hamiltonian	
remains stationary and is equal to its value at tb and ta respectively: 
27a) ∆H(tb)	=	h/tb (1 + (c. qb)^2 + …) with qb = star source space coordinate ≈	average	distance	to	the	starlight	wave	
sphere measured from the zero-space coordinate place qi ≈	starlight	wave	sphere	radius	rs	at	time	tb” 
27b) ∆H(ta)	=	h/ta	(1	+	(c.qa)^2	+	…)	with	qa	=	measurement place space coordinate 

At time tb the starlight wave has reached the space origin at qi. In the case of two measurement apparatus, 
measurement at one of these will exclude measurement at the other since the complete wave has collapsed to one place. 
The starlight radiation wave is regarded as one unity, and measuring the wave energy means counting its wave packets at 
a certain place qa. Somehow a light wave from a star source at a time t is related to a certain propagation sphere radius 
r(t), related to the velocity of light, and r(tb) = rs. During a measurement time interval ∆t,	 wave	 occurrences	 can	 be	
measured or counted a number of times #n, depending on the initial energy E*, emitted during a similar time interval, that 
corresponds to the number	of	stationary	state	wave	packets	at	t	<	tb:	E*	=	#n	hν.	During	measurement	event	∆t	counted	
are not just one wave packet, rather the complete wave and all the #n wave packets, with the complete energy E*arriving 
at q(ta) = qa. This agrees with the traditional qm description of wave radiation measurements and wave packet collapse 
[Wichmann, 15], and the description of qm measurements in a cosmological context in [Hollestelle, 14]. Chosen is for a 
wave packet collapse description rather than a probability description to remain near to the above wave picture of light 
including light propagation. In the following #n and its relation to the star source energy E* will not be further specified, 
however it is possible that #n = 1, when the light wave just consists of one wave packet. #n = 0 does not easily agree with 
measurement of #n, it then seems no star light is detected during ∆t. 

The measurement event at qa near qi can be chosen with (c.qa) << 1. qi is, like qa, at a distance rs to the star itself 
and thus part of the starlight wave sphere surface at time tb. Starlight E* is assumed to originate from the star without 
preferred direction and appears at distances r(t) from the star simultaneously, where r(tb) = rs is approximately the same 
as the average distance of the starlight wave sphere surface to the origin qi, with rs = |qb|. Then E(t < tb) = E(complete) = 
E*	=	#n	hν	with	ν	 the	constant	 light	wave	 frequency.	In	 the	 following	all	H,	L,	p	and	q	describe	properties	of	one	wave	
packet. For the complete wave is used a subscript c: E*= Ec = #nE, etc. One assumes that for one wave packet energy E 
equals	hν	=	T(tb)	=	- ∆T,	when	light	wave	energy	is	considered	to	be	kinetic.	V(tb)	=	0	and	T(ta)	=	0	and	V(ta)	=	T(tb),	when	
all energy after the collapse is included in V. The total energy H0 = T + V is conserved throughout the collapse event. 
Evaluated are the difference between < H(tb) > for a time interval just before the collapse of the wave packet and < H(ta) > 
for a time interval just after the collapse of the wave packet, applying equation 3). 
28)  < H(ta) >|∆ta	- < Hc(tb) >|∆tb	=	1/2	(pa.xa	– pb.xb) – 1/3 ((“dL/dx”|∆xa).xa	- (“dLc/dx”|∆xb).xb) 
Again, subscript c means all #n wave packets together for t near tb, while at ta no subscript is used since the wave has 
collapsed at those t near ta. As before x = “dq/dt” ∆t.	There	is	Hc(tb)	=	#n	hν	+	∆Hc(tb),	with	again	ν	the	wave	frequency.	
Hc(tb) just before the event is time independent, thus for its average one may write the value at tb: < Hc(t < tb) > = H(tb), 
and similarly < H(t > ta) > = H(ta): before tb and after ta a stationary state is assumed. From the uncertainty relations, 
recalling paragraph 9), pb equals h/qb = h/rs for ∆p	=	- p and ∆q	=	- q. Both p and q are independent of #n. ∆Hc(tb)	follows	
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from the Legendre transform relation for L and H, evaluated for #n=1 and for unspecified #n, while pb.xb remains the 
same for both cases: pb.xb = #n 2T(tb) + ∆Hc(tb)	=	2T(tb)	+	∆H(tb)	with	T(tb)	=	E	=	hν.	Equation	28)	then	reads	as: 
29)		#n	hν/∆t	=	#n	H0/∆t	+	∆(∆H(ta)	- ∆Hc(tb))/∆t	- 1/3 ∆(L(ta)	- #n L(tb))/∆t	– 1/2 ∆(pa.qa	– pb.qb)/∆t 
Solving ∆Hc(tb)	as	a	function	of	#n,	and	with	∆H2	from	equation	19),	the	following	two	sets	of	equations	follow,	each	set	
for #n unspecified and for #n = 1:  
30a)	hν	=	- 3/2 (2 #n – 3)^(-1) ∆H2(tb,ta)			/		hν	=	+	3/2	∆H2(tb,ta)		(#n	=	1) 
30b)	hν	=	+	3/2	(2	#n	– 3)^(-1) (∆H(ta)	- ∆H(tb))			/		hν	=	- 3/2 (∆H(ta)	- ∆H(tb))		(#n	=	1) 
These	equations	do	not	imply	that	the	frequency	ν	depends	on	the	right	side	quantities	like	#n,	rather	ν	depends	only on 
the properties of the star source and the variable is ∆H.	Rewriting	∆H	in	 the	exponent	version	exp(	 - (c.q)F) G exp ( + 
(c.q)F) with F = i and G = h/t and applying the relation between ta and tb from equation 17) one finds for #n = 1, in the 
series version: 
30c)	hν	=	3/2	h	(1/tbta)	∆tbta	(	- 1 + 1 + (c.rs)^2 + …) 
∆H2(tb,ta) is a function of the interval ∆tbta	and	its	borders	ta	and	tb	while	∆H(t)	 is	a	function	of	time	moments	t.	With	
∆H2(tb,ta)	the	description	of	the	time	interval	dependent	H	is	complete. Comparing equations 30) with equations 22) it 
follows: 
31)  ∆H2(tb,ta)	=	- exp ( - (c.qa)i) h/tbta ∆tbtaexp(+	(c.qb)i)	=	- 1/2 h_/∆tbta	=	-2/3 (2#n – 3)	hν 

A relation h_/∆tbta^2	and	h/tbta	exists,	that	corresponds	with	the	relation	of	∆tbta	with	its borders tb and ta. The 
wave	packet	energy	E	=	hν	is	a	kinetic	energy	and	is	positive	since	ν	is	a	counting	parameter,	counting	occurrences	per	
time unit. Then according to equation 30b) ∆H(tb)	decreases	to	∆H(ta)	with	∆H(tb)	>	∆H(ta)	and	∆H2(tb,ta)	>0	for #n = 1. 
For this situation with only one wave packet ∆H2	=	2/3	hν.	For	all	#n	>	1	the	relation	is:	∆H(tb)	<	∆H(ta)	and	∆H2(tb,ta)	<	
0. Not considered are negative energies like for instance appear in Dirac’s theory of relativistic quantum mechanics. The 
possible influence of a work-function is not considered either. A proof that with ∆H2	 from	 equation	 19)	 the	 above	
equations	30a)	and	30b)	correspond	to	the	same	frequency	ν	is	given	in	appendix A). A specific choice for the constant c is 
needed for this: (c.rs)	=	2π	and	this	means	that,	depending	on	naïve quantization of the complete wave, at time tb: c = ν/c-
light	(2π^2)	with	c-light the velocity of light. The constant c can be measured from observation of E* or c-light	and	ν,	apart	
from	(c.rs)	=	2π	and	an estimate for rs. A measurement for rs is an indirect test for the light wave measurement and wave 
collapse description in terms of measurement event time interval ∆t. 
 
13. Discussion 

Spatial distance measurements allow for translations of a local measurement place since space is translation 
invariant. Translation of measurement event time intervals that are “local” or “timely” is not possible because the time 
coordinate and time interval ∆t	 are	 not	 translation	 invariant.	 The	 interval	 ∆t	 changes	 from	 event to event while the 
relevant equilibrium changes with it. The intuition, based on time experience, is that a time interval should be 
asymmetrical. With translation invariance a symmetric time interval defined with ∆t	=	[-ta, ta] like is possible for space 
intervals could have been possible. Then the equilibrium does not change when ta, and –ta with ta, changes. The 
symmetrical and anti-symmetrical properties of the time interval ∆t	=	[tb,	ta]	depend	on	(n)	and	(i)	and	define	the	change	
of the equilibrium. The time equilibrium of the asymmetric “slope”, with the “mean velocity theorem”, is a liberation of one 
value time averages to a changing time interval. This description with finite time intervals seems to be justified at least for 
situations with time dependent events, events with change, and a time dependent Hamiltonian. Curie’s principle can be applied 
directly to state that finite(…) asymmetrical time intervals are real for events with a time dependent Hamiltonian. However, this 
is not a statistical interpretation of time, like for instance the qm time interpretation of Campbell [Beller, 10] because the 
time coordinate is not defined to be probabilistic, rather with elements (n) and (i). It is questionable whether (n) and (i) 
that define [tb, ta] support time reversal symmetry for GR. 

Frequency is a property of a wave phenomenon, while time is a coordinate of 4-space. With counting by 
frequency, one means counting occurrences within a time interval, which is a finite event time interval. Counting by time 
rather means counting time itself till the (next) occurrence, which means matching to an in-definitive event time interval. 
Counting by frequency can be meaningfully repeated giving finite results. Counting by time does not allow for a zero-
occurrence result. 

The time interval dependent energy quantity ∆H2	=	-“d∆H/dt”|∆t	∆t	equals:-2/3 (2#n – 3)	hν,	following	equations	
30) and thus ∆H2	is	related	to	wave	frequency	ν,	a	counting	parameter.	The	number	of	occurrences	#n	itself	is	expected	to	
depend	on	ν	in	a	complex way, and inferred is that #n is proportional to |∆t|:	the	measurement	time	interval	∆t	relates	to	
the radiation time interval of the star source and thus to #n. This means the time interval description has a direct 
interpretation with counting and measurements	including	measurable	properties	like	#n	and	ν.	The	interpretation	of	qm	
measurements and wave packet collapse is not conclusive or definitive, [Beneducio, 16], [Van Kampen, 17]. Van Kampen 
discusses entropy change in relation to qm measurements. This is interesting in relation to the result in paragraph 12) 
concerning the change of ∆H	during	wave	packet	collapse. 

For the three-space metric tensor mij it is well known that Trace(mij) is proportional to kinetic energy T. Positive 
kinetic energy and positive metric distances are expected to occur together. The kinetic energy relation for starlight Elight 
=	T	derived	in	paragraph	12)	with	Elight	=	hν	=	3/4	(2#n	– 3)^(-1) h_/∆t	thus	defines	a	metric	in	4-space. For a light wave 
with velocity c-light there is Trace(mij) = 2 Elight /m(c-light)^2 and this can be interpreted as a metric tensor mij for 
which Trace(mij) relates to both the wave “path” and to its frequency. In 4-space the metric free path length including the 
time coordinate is (∆τ)^2	=	Trace(mij) ∆q^2	- mtt (c-light)^2 ∆t^2.	For	a	“local”	4-space distance and assuming that during 
measurement and wave packet collapse the light velocity property does not alter and (∆τ)^2	remains	zero,	the	time	part	of	
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Trace(mij)	 is	mtt	=	2	hν/mc-light^2 (∆q/∆t)^2 1/c-light^2. The value of (∆q/∆t)^2	resembles	an	apparent	light	velocity	
when assumed constant, however it is determined by and varies with the measurement event properties and is not a 
natural quantity. 

For |∆t|	>>	1	this	measurement	event	time	interval is expected to be proportional with #n >> 1. Also, h_ = p.q – q.p 
= - 2 ∆p/∆t	q0t0.	Then	it	is	found	h_	=	2	(∆H(ta)	- ∆H(tb))	∆t	cos(p,	q)	where	equilibrium	equations	11)	and	equations	30)	
are applied. With this expression for h_ the factor cos(p, q) re-emerges from the scalar product of the vectors p and q. Both 
∆t	and	∆q	depends	on	the	preparation	of	the	measurement	event.	 
mtt	 is	proportional	only	 to	hν	(∆q/∆t)^2,	 i.e.	h_	(∆q/∆t)^2	∆t^(-2) leaving out all constants including m, and the metric 
time span mtt ∆t^2	 is	 proportional	 to	 h_	 (∆q/∆t)^2.	mtt	 can	 be	 zero	 depending	 on	 h_	 =	 0	when	H	=	H0	 remains	 time	
independent and p.q = q.p, when the light wave does not interact with the measuring apparatus. Then even for ∆t	>>	1,	#n	
= 0 and the above description does not apply. The factor cos(p, q) depends on the angle by p and q and equals zero for an 
applied force perpendicular to the light wave “path”. However, then the equilibrium equations 11) are not valid. The time 
interval of the measurement event depends on the measurement specifications and can be chosen |∆t|	>>	1.	The	distance	
of the investigated star depends on the star source choice, and if this source can be identified it could be one for which its 
distance is determined very securely and fixed, and for which rs >> 1. Even with |∆t|	 >>	 1	 according	 to	 the	 result	 in	
paragraph 11) the measurement event time interval can be measurable when taking care of the limits mentioned there. 
This has cosmological implications and is still subject of study. Largest time intervals and largest distances rs can thus be 
related through the metric tensor mij. 
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Appendix 

 
 Equations 30 and 31 

The final result from paragraph 12) with equations 30a/b) and equation 31) is: 
hν	=	3/2	h/tatb	∆t	(	- 1 + 1 + (c.rs)^2 + …) = 3/2 ∆H2(tatb)	=	- 3/2 exp( - (c.ra)i) h (1/tbta) ∆tab	exp(	+	(c.rs)i) 
The space coordinates qb and qa are represented by rs and ra. The series is derived from the product of Taylor series for 
the exponents exp ( - (c.rs)i)  and exp ( + (c.rs)i). This is defined in paragraph 7). The constant c is yet 
unspecified;however, a choice is proposed later on to simplify the result for this case. When this choice is applied earlier 
the final result for any c cannot be derived. There is: 
32)  exp(-(c.rs)i) exp(+(c.rs)i) = (1 + (-c.rsi) + 1/2! (-c.rsi)^2  +…) (1 + (c.rsi) + 1/2! (c.rsi)^2  +…) 
33)		=	1	+	Σ|n	(1/n!)	((c.rsi)^n	+	(-c.rsi)^n))	+	Σ|n	(	Σ|k (1/k!n!)  (-c.rsi)^k (c.rsi)^n + (c.rsi)^k (-c.rsi)^n)) 
Both summations in equation 33) start from k, n = 1 to infinity. For k - n = even the terms in the second summation equal 2 
(-1)^k (c.rsi)^(k + n). For k - n = not even the terms of this summation equal zero because (-1)^k = - (-1)^n. One gathers 
together all terms of order v in (c.rsi), while maintaining that for v = even: k = even and for v = not even: k = not even, for 
the non zero terms. Then the second summation in equation 33) can be written as: 
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34)  Σ|v=even	Σ|k=even	2	(1/k!(v-k)!) (-1)^k (c.rsi)^v + Σ|v=	not	even	Σ|k=not	even	2	(1/k!(v	- k)!) (-1)^k (c.rsi)^v 
Summation for k runs till k = v. One can insert the binomium equality k! (v - k)! = v! (v/k)^(-1) where the symbol (v/k) 
means the usual “v over k” to derive the following complete expression: 
35)		1	+	Σ|v	(i)^v	(1/v!)	((c.rs)^v		+	(-c.rs)^v)	+	Σ|v	2	(i)^v	(1/v!)	(c.rs)^v	(Σ|k	(-1)^k (v/k)) 
The summation for k from 1 till k = v, at the right side, equals: - 1	+	Σ|k	(-1)^k (v/k) = - 1, and to this summation, the k = 0 
term is added. One arrives at: 
36)		1	+	Σ|v	(i)^v	(1/v!)	(-(c. rs)^v + (-c. rs)^v) 
Every term with v = even is zero. The above derivation can easily be repeated with the first exponent including ra instead 
of rs. Recall (c.ra) << 1. One then remains with: 
37a)  exp(-(c.rai))	exp(+(c.rsi))	=	1	+	Σ|v	(i)^v	(1/v!)	((-(c.rs)^v + (-c.ra)^v) + 2 (-1 + (-1)^v) (c.rs)^v) 
= exp(-(c.rs)i) exp(+(c.rs)i) + Rest  
37b)		Rest	=	Σ|v	(i)^v	(1/v!)	((-c.ra)^v + (-c.rs)^v – 2 (c.rs)^v) 
= exp(-(c.ra)i) + exp(-(c.rs)i) - 2 exp(+(c.rs)i) = - 2 (exp(+(c.rs)i) – exp(-(c.rs)i) - exp(-(c.rs)i) + exp(-(c.ra)i) 
From this it follows that Rest = 0 is a good estimate for a specific choice for the constant c. The result is:  
38)  exp(-(c.rs)i) exp(+(c.rs)i) + Rest = exp(-(c.ra)i) exp(+(c.rs)i) 
The	constant	c	within	(c.rs)	can	be	chosen	such	that	there	is	(c.rs)	=	2π	and	exp	(+/-(c.rs)i) = exp(+/-2πi)	=	1.	Including	
exp(-(c.ra)i) ≈	 1	 for	 (c.ra)	 <<	 1,	 this	means	 for	 this	 choice	 for	 c,	 Rest	 =	 0	 as	 expected.	 Notice	 that	 for	 (c.rs)	 =	 2π	 the	
exponents in ∆H	are	equal	to	1.	Equation	38),	for	any	choice	for	c,	resulting	in	exponents	in	∆H	possibly	differing	from	1,	
and with a possibly non zero Rest function, is the main result of this appendix. 
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