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1. Introduction 

Functional analysis finds a lot of applications through summability theory. Broadly, summability is the theory of assignment of limits, 

which is fundamental in analysis. The results from this research will provide useful information to engineers to improve on areas of 

application of eigenvalues and eigenvectors in engineering. It will also be useful to mathematicians when solving similar problems. 

 

1.1. Eigenvalues  

Given a square matrix A , let us consider the problem of finding numbers λ ( real or complex ) and vectors ( vector columns ) �	(� ≠0) such that�� = 	�.This problem is called the eigenvalue problem, the number λ are called the eigenvalues of the matrix � , and the 

non-zero vector � are called the eigenvectors corresponding to the eigenvalues λ . 

To find eigenvalues; we note that 	� = 	
�, where 
 is the identity matrix. Then we can rewrite �� = 	� in the form�� − 	
� = 0 

Matrix equation �� − 	
� = 0 (which in fact represents the linear system) has a non-trivial solution � ≠ 0 if and only if the matrix � − 	
 of this system is singular, which is the case if and only if ��(� − 	
) = 0 Thus we have the equation for finding eigenvalues 

λ which is called the characteristic equation. 

 

1.2. Classical Summability 

The central problem in summability is to find means of assigning a limit to a divergent sequence or sum to a divergent series. In such a 

way that the sequence or series can be manipulated as though it converges, (Ruckel, 1981), pp. 159-161. The most common means of 

summing divergent series or sequences, is that of using an infinite matrix of complex numbers or by a power series. 

 

1.2.1. Definition 

Sequence to Sequence transformation 

Let � = (���)	, �	, � = 0, 1, 2, …  be an infinite matrix of complex numbers. Given a sequence � = (��)���∞   define  �� =∑����� 	,			� = 0, 1, 2, … . If the series, converges for all �, then we call the sequence (��)���∞  , the � − ��������  of the sequence (��)���∞  . If further,  �� → �		��		� → ∞ , we say that (��)���∞  is summable 	�	��	�. . 
There are various sequences to sequence transformations, here we state Norlund means below which is the matrix of interest in this 

paper. 
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1.2.2. (Norlund means) 

The transformation given by�� = 89:∑ ;�<���	,���,8,=,…����  

where >� = ;� + ;8 +⋯+ ;� ≠ 0 , is called a Norlund means and is denoted by (N, p).  

Its matrix is given by  

��� = @;�<�>� 	 , 0 ≤ � ≤ �
0							,											� > � C 

  

In the matrix above if  ;� = 1, ;8 = −2, ;= = ;D = ⋯ = 0, �ℎ�	� = ��� .i.e. 
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1.2.3. Adjoint of A (A∗) 
It is the transpose of the matrix A and we denote it here by F∗. 
 

1.2.4. Dual space ofc� 
It is ,�∗ and it is the space /8 ; the space of absolutely convergent series. 

 
1.3. General Results in Classical Summability 

→ Definition 1.3.1(regular method, conservative method) 

Let� = (���), � = 0, 1, 2, 3, …  be an infinite matrix of complex numbers. 

i. If the � transform of any convergent sequence of complex numbers exists and converges then � is called a conservative 

method. We then write� ∈ (,, ,) 
ii. If the � transform of any convergent sequence of complex numbers exists and converges, then  � is called regular. 

 

→ Theorem 1.3.1� ∈ (,�, ,�) if and only if 

i. limL→∞	��� = 0	for each fixed� 

ii. �6;�M�#∑ |���|
∞��� * < ∞ 

Proof: (Hardy, 1948), pp. 42 - 60; (Maddox, 1970), pp. 165 - 167. 

 

2. The Eigen values of Operator A On NO 
 

2.1. Boundedness of operator A on sequence space ,�. 
In this section we show that ∈ -(,�) . The corollary below arises from theorem (1.3.1) above.  

Corollary 2.1.1 It is clear that	� ∈ -(,�) .  since /0 �→∞��� = 0foreachfixedk from matrix A. 

‖�‖ = �6;�M�Q|���| = sup(1, 3, 3, 3, … ) = 3∞

���
 

Also  ‖�‖ = ‖�∗‖ = 3 

 

Lemma 2.1.1 Each bounded linear operator T:X → Y,where� = ,�, /8, ���	U = ,�	,/V(1 ≤ ; < ∞), /∞ determines and is determined 

by an infinite matrix of complex numbers. 
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Proof. see (Taylor, 1958) pages 217-219 

 

Lemma 2.1.2LetW:	,� → ,� be a linear map and define W∗: /8 → /8		X�	W∗�	4 = 4	�	W, 4 ∈ 	 ,�∗ = /8  then T must be given by a matrix 

by lemma (2.1.1) and moreover W∗:	/8 → /8 is the transposed matrix of   T. 

 

Corollary 2.1.2 Let�:	,� → ,� where A is our matrix of interest. Then �∗ ∈ -(/8), moreover  
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2.2. Eigenvalues of A on the sequence space ,� 
Theorem 2.2.1.� ∈ -(,�) has no Eigenvalue. 

 

Proof: Suppose Ax=λ x for � ≠ 0	0�	,�	���		 ∈ ℂ 
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solving system (2.2.1) we have that if 0x  is the first non zero entry of x, then λ =1,but  

λ =1impliesthat ......210 ===== nxxxx i.e. 
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which shows that x is in the span of δ. But δ =(1,1, 1,) 0c∉  . That is x does not tend to zero as n tends to infinity, so λ =1 is not an 

eigenvalue of )( 0cBA∈  .  

If 1+nx  ,n=0,1,2, 3, is the first non zero entry, then λ =-1. Solving the system with λ = -1 results in �� = 0,n=0,1,2, 3, a contradiction. 

Hence λ =-1 cannot be an eigen value of )( 0cBA∈ . 

Thus )( 0cBA∈  has no eigen values i.e. the set of eigen values is empty. 

→ Corollary 2.2.1 The set of Eigenvalues of A ∈ B( X5� )&� ∈ -(/8) is empty 

 

Proof: This follows from the fact that X5� ⊂ 	 ,�  also   /8 ⊂ ,� 
 

→ Theorem 2.2.2. The Eigenvalues of �∗ ∈ -(/8) is the set  

 

{λ ∈ℂ :| λ +1|<2}∪ {1}  

 

Proof: Suppose ∈≠= λλ andxforxxA 0* ℂ 

Then: 
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solving system (2.2.2) for nxxxx ...,,,, 321 in terms of  0x gives 
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By ratio test  

lim�→∞ Z��[8�� Z = lim�→∞ \
2<�2<8	�	 ]1 + 8̂_� ]1 − 8̂_ ��

2<�	� ]1 + 8̂_� ]1 + 8̂_<8 ]1 − 8̂_ ��\ 
lim�→∞ \ 2<8	

]1 + 8̂_<8\ 
Z12 	 `1 + 1	aZ = /		���	�� 	��/	�6 X�	/ ≥ 0 

By ratio test �� ∈ /8			0��	/ < 1 

That is ifc8= 	 + 8=c < 1 

  or 

| λ +1|<2  

That is the series ∑ |��|∞��� converges for all λ in the circular disc centred at the point ( -1,0) of radius 2. 

It is clear that λ =1 is an eigenvalue corresponding to the eigenvector (	��	,0,0,0, . . . )d . Where�� is any real or complex number. This 

is the case since (	��	,0,0,0, . . . )d ⊂ /8 forany��	 ∈ � 

Hence the Eigenvalues of�∗ ∈ -(/8) is the set {λ ∈�  :| λ +1|<2}∪ {1}  

 

3. Conclusions 

In this paper the following results were obtained 

i. )( 0cBA∈ has no Eigen values 

ii. Also A ∈ B( X5� )&A ∈ B( /8 )has no Eigenvalues 

iii. The set of Eigenvalues for �∗ ∈ -(/8) is { λ ∈�  :| λ +1|<2 } ∪ {1}  
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5. Notations ‖. ‖ norm of 

In general, {...} will denote the set of, (...) the set sequence of and (… )d the transpose of the sequence of; unless otherwise specified. ,� the set of sequences which converge to zero (null sequences),X5� the space of null bounded variation, /8 the space of absolutely 

convergent series. �∗  adjoint of � ,�∗dual space of  ,� 
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