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1. Introduction 

Landslide hazard is one of the most destructive geological hazards that cause damage on the physical environment 
(Pardeshi et al., 2013).As described by Varnes and the IAEG (1984), a landslide hazard is the probability of occurrence of a 
landslide within a given area and at a specific time. Varnes (1978) defines landslide itself as “a downward and outward 
movement of slope forming materials under the influence of gravity”. From these definitions, the “where” and “when” factor of 
landslide occurrence forms the basis for landslide hazard assessment (Afungang, 2015). The prediction of landslides events 
has been a subject of discussion for geomorphologists and land-use planners for many decades (Soeters and Van Westen, 
1996; Swets, 1988) and remains an active subject stimulating scientific discourse today. Pardeshi et al. (2013); Gokceoglu and 
Sezer, (2009) in their research on hazard publication in international journals noted that there is significant growth of 
landslide hazard related articles in different parts of the world especially those induced by man activities. These publications 
shows that slope movements can be modeled through a number of approaches. These includes the statistical approach (e.g., 
Epifanio et al., 2013; Bateira et al., 2010; Zêzereet al.,2004; Guzzetti et al., 1999; Swets, 1988), the physical or process-based 
approach(e.g., Teixeira et al., 2014; Vieira et al., 2010; Baum et al., 2010; Crosta and Frattini, 2003; Terlien, 1998; Montgomery 
and Dietrich, 1994) and a combination of the two approaches (Frattini et al., 2009; Gorsevskiet al., 2006; Terlien, 1998).  
Whether it is statistically or physically based, each method has its own weaknesses (Frattini et al., 2009; Gorsevski et al., 2006; 
Crosta and Frattini, 2003; Guzzetti et al., 1999). Due to some limitations such as the lack of proper knowledge about the 
mechanical properties of rocks, the mechanisms physical laws controlling slope (Fell et al., 2008) and the difficulties involved 
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Abstract: 
The Bamenda escarpment zone which is about 8.4 km2is one of the most hazardous zones along the North-West stretch of the 
Cameroon Volcanic Line. Landslide events in this area cause harm to humans and economic disruptions almost on a yearly 
basis. The impact of this hazard is highly felt in Bamenda I, II and III municipalities especially those communities leaving at 
close proximity to the escarpment. The steep slopes dominated by volcanic rocks and highly weathered residual soils are 
easily pulled down by gravity during the rainy season.  The objective of this study is to use a quantitative technique (logistic 
regression model) in assessing landslides susceptibility in the area. Landslides were identified using aerial photographs, 
satellite images and systematic field recognition. A total of 110 landslides mostly shallow translational landslides were 
registered during the landslide inventory process. This landslide dataset was randomly divided into two groups and the first 
group was used in building the predictive model and the second in its validation. Ten landslide conditioning factors were 
initially considered for the assessment and after being tested using the accountability and reliability indices, six out of the ten 
factors were retained for the susceptibility modeling. The slope was the most important geo-environmental factor influencing 
landslides and had a coefficient of 0.927. The model was validated using the success and prediction rates methods and the 
Area Under the Curve (AUC) was used to evaluate the performance of the model. The training model had a success rate of 
81% and the validation model had a prediction rate 88%. The predictive power and accuracy of the model was evaluated 
using the error index of the ROC curve. The model had a True Positive rate of 0.554, a True Negative Rate of 0.879, an 
accuracy of 0.879 with a precision of 0.006. From this result, we concluded that landslide remains a serious threat in the area 
and can be predicted statistically.  
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in applying physical and deterministic models on very large scales (Feda et al., 1995; Montgomery and Dietrich, 1994), 
statistically-based models have most often preferred. In the past years, studies on landslide hazard had focused on relating 
landslide occurrence to several independent variables using statistical techniques (Duman et al., 2005; Guzzetti et al., 2005; 
Alleotti and Chowdhury, 1999; Soeters and van Westen, 1996; Carrara et al., 1998; Gorsevski et al., 2006). This easy-to-use 
method has led to an increase in the publication of susceptibility assessment articlesas noted by Gokceoglu and Sezer (2009). 

The Bamenda escarpment just as other landslide hazard affected areas in the world has seen an uptick in landslide 
events in recent years with severe impact on landscape, humans and biodiversity (Ndenecho, 2011). The impact of human 
action on steep slopes plays an important role in weakening the regolith (Dai and Lee, 2003) and is thought to be the main 
driving force behind this increase in slope failures. Landslide occurrences in the Bamenda area have most often been assessed 
qualitatively (e.g., Lambi, 2004, Eze and Ndenecho, 2004) with highly subjective results since judgment is based solely on the 
experience of the geomorphologist. The objective of this study is to use the logistic regression model (Cox, 1958) which is a 
database and multivariate quantitative technique to assess the susceptibility of the area to landslides and to evaluate the 
impact on land-use on slope failure. The study assumes that past behaviour trends of natural systems may be extrapolated into 
the future causing the same effects (Fell et al., 2008; Zêzere et al., 2004) meaning that past failures is key in predicting future 
failures. 

 
1.1. Study Area 

The Bamenda escarpment is part of a geomorphologic system in the region called the West-Cameroon Highlands 
(Hawkins and Brunt 1965) and lies along the Cameroon Volcanic line (Guedjeo et al., 2013; Déruelle et al., 2007; Gountié et al., 
2012) which is an extension of the West-African Volcanic line. The study area(fig 1) covers an approximate area of 8.4 km2and 
includes the escarpment proper and its periphery. Although landslides events have largely been recognized along very steep 
escarpment slopes, the gentle slopes around the escarpment also had a number of landslides.  The escarpment fault divides the 
study area into two main relief units with the volcanic mountain to the south and the lowland (plain) to the north (fig 2). It is a 
highland area with very high hypsometric difference. For instance, the peak altitude at the volcanic mountain is 2670m and 
the lowest altitude point in the plain is 1034m (ALS). 

The general geological structure includes; basanite, hawaiite, mugearite, benmoreite, trachyte, rhyolites and 
ignimbrites (Gountiéet al., 2012) and the escarpment itself is characterized by an alignment of volcanic massifs and orogenic 
plutonic complexes. It is composed of trachyte; rhyolite and ignimbrite are covered by lateried basalt and felsic lavas which 
form the materials of most debris flows. The lowland is mainly composed of plutonic granite and gneiss rocks with patches of 
ignimbrite and phonolite which are rigid formations. Altitude is an important causal factor of landslide here as weathering is 
very high at the higher altitudes and decreases with elevation (Duman et al., 2005; Dai et al., 2003).Rock typesequence is an 
important factor influencing slope movements (Guzzetti et al., 2005; Bateira and Soares, 1997) because it influences the slope 
stability (Eberhardt, 2003a) and weathering processes.  

About 66% of the study area has rectilinear slopes where most slope failures have occurred in the past and concave 
slopes make up 28%. Convex slopes make up about 16%of the study area and are mostly known for rock falls. For instance, the 
Mbi crater (volcano) is a large anticlinal (quasi perpendicular) structures found in the area and famous for its spectacular rock 
falls. Slope curvature as important landslide conditioning factor (Duman et al., 2005; Bateira and Soares, 1997) is also an 
important conditioning factor in the area.  

 

 
Figure 1: Location of the study area 

http://www.ijird.com


 www.ijird.com                                                                              December, 2017                                                                              Vol 6 Issue 12 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT        DOI No. : 10.24940/ijird/2017/v6/i12/DEC17076 Page 189 
 

Slope steepness is widely accepted as one of the most important determining factors of slope instability (Dietrich and 
Montgomery, 1998; Bateira and Soares, 1997; Soeters and van Westen, 1996; Montgomery and Dietrich, 1994). The steepness 
of the slope also determines the accumulation and transport of unconsolidated materials down the slope (Dai and Lee, 2003). 
The steep slopes have an outcropping geology with bear soils and the moderate slopes are covered by scree or talus deposits 
from fragmented rocks that originate from the cliff face and deep weathered mantle material. Most devastating landslides on 
the volcanic mountains have been recorded in areas where thick clayey materials of several meters lay above. Very fine-grain 
debris developed from rhyolite or trachytic parent materials are capable of trapping large amounts of water in their structures 
during the rainy season. Although clays are almost impermeable, the presence of this daily recycling material beneath clay 
layers makes it easy for them to slide. Colluvium dominates the low slopes composed predominantly of fine grain particles 
(Guedjeo et al., 2013) and these unconsolidated particles are mostly plastic in nature capable of holding much water in its 
upper layers. Colluvium is known to provide favorable conditions for shallow landslides (Vieira et al., 2010). The terraces on 
the slopes, fluvial terraces and some valleys are dominated by sandy soils and alluvium deposits with depths between 1-3 
meters deep (Afungang, 2016). These materials allow water to go deep into their profile and are believed to be responsible for 
some of the deep-seated landslides that had occurred in the area. Geotechnical analysis show that the soil has a low bulk 
density of 1.32-1.59, low specific density of 2.20-2.58, high porosity of 47.92-64.28%, a water content exceeding 35.2% 
coupled with low cohesion ranging between 2.60-7.20 Kilopascal (kPa) with an angle of internal friction ranging between 
25.5ᵒ to 28ᵒ (Guedjeo et al., 2013; Gountié et al., 2012) which makes the soil highly exposed to landslides. 

The climate of the study area is generally cool and dry compared to the rest of the country with temperatures ranging 
between 13 and 22ᵒ C (Ndenecho, 2011). The region receives about 2500mm of rainfall annually (Afungang, 2015; Ndenecho, 
2011; Lambi, 2004) and rainfalls last from March to October with July and August being the rainiest months. This sub-tropical 
forest biome climate facilitates weathering (Hawkins and Brunt, 1965) while the rugged relief and the dense dendritic 
drainage system accelerate the transportation of sediments down the slope. The increase in population and land-use along the 
escarpment and its peripheries has a negative impact on the land cover and the ecology of the area. For instance, the small 
upland watersheds seen in the 1930s have degraded from moist, evergreen, sub-mountain forest to farmland and rough 
pastures (Ndenecho, 2011; Lambi, 2004) to almost bare soil.  
 
2. Materials and Methods  

The landslide inventory used in the study was built from the interpretation of aerial photographs, satellite images and 
direct ground survey carried out in 2009, 2012 and 2013. Aerial photo interpretation and field investigations are traditional 
methods largely used in the identification of geomorphologic features (Hapke et al., 2009) and information gathering on 
natural system (Redweik et al., 2009). The aerial photos that were used were taken in 1965 and the satellite images used were 
taken from 2001 to 2011. The aerial photos show landforms produced by landslide events on and before 1965 and the satellite 
show some landforms produced before 2001 and those from 2001 to 2011.Landslides that were visible on the satellite images 
and absent on the air photos were believed to have occurred between 1965 and 2001. The total number of landslides 
identified from satellite and aerial photos were 69. Other 41 landslides were recognised during field work giving a total of 110 
landslides. The largest landslides had a size of 5,565m2 and the smallest measures 912m2 with the average slides estimated at 
287m2. Only the landslide scarp was considered in the model leaving out the run-out area even though the entire landslides 
were mapped. Landslide types found in the area included; debris flows, rock slide, debris slides, debris flows and earth flows. 
Landslides used in the modeling were defined according to movement type and shallow translational landslides were those 
considered in the study. For modeling purposes, the landslide dataset was randomly divided into two groups so that the 
former can be used in training the model and the latter in the validation. There are three main types of landslide division used 
in the validation of susceptibility model. This include: the spatial, temporal and random division (Zêzere et al., 2004; Aleotti 
and Chowdhury, 1999; Chung and Fabbri, 2003; Soeters and van Westen, 1996) although this divisions have their weaknesses 
(e.g., Raia et al., 2014; Guzzetti et al., 1999). The spatial criterion which classifies slope failure with variation in space could not 
be used because some landslides sites were inaccessible and the temporal criterion could not because some landslide dates 
were unknown. Thus, the random criterion was the only option that could be applied in separating the landslide dataset. The 
first group was named the training group and the second was referred to as the validation group. Each of these groups 
contained 55 landslides scarps each. The first group containing 896 grid cells and the second had 858 grid cells with each grid 
cell measuring 10m2. 

The logistic regression model was used in the modeling process. This model uses a dichotomous dependent variable 
(Y) and this requires two groups of variables to be represented. Since the independent variable (Y) is dichotomous, the first 
value (Y=1) represented areas with landslides (positives), and the other value (Y=0) represented areas with no slides 
(negatives). This was achieved by randomly generating 110 “pseudo” points called non-points within the study area with a 
400m buffer around landslide scars using the buffer creation tool in ArcGIS 10.2. This buffer distance was based on the 
minimum distance that was recognized between landslides in the field. Randomly extracted point that fell within the buffer 
perimeter were immediately eliminated. Areas without slope failure were represented by 220 points containing 1792 grid 
cells which is double the number of the registered landslides. Although most published papers adopt a balance dataset with 
equal number of positives and randomly extracted negatives, we double the number of negative because we hold the opinion 
that logistic regression works well when the negatives are widely spread and fully represent the study area (Tien Bui et al., 
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2012; Atkinson and Massari, 1998) and since landslide area is usually very small compared to the study area (Blahut et al., 
2010).However, some authors (e.g., Yao and Dai, 2006; Dai and Lee, 2003) due argue that the doubling of grid cells for areas 
without landslides might cause an over-estimation in the model. 

 

 
Figure 2: Landslide source area on shaded relief 

 
2.1. Selection of Conditioning Factors used in the Study 
To derive detail information on predictive variables to be used in the modeling process, each factor was divided into sub-
classes (table 1) depending on their physical characteristics and standard deviation (Yao and Lee, 2006). As earlier noted, 
seven landslide conditioning factor were selected(fig. 2) and those that were in vector form were transformed into raster 
maps with a unique cell size of 10m2. Each of these raster maps were then overlay with the landslide inventory map from 
which negatives representing non-landslides pixels were extracted. 
 Landslide conditioning factors (geo-environmental factors)used in the assessment came from three sources. The 
firstgroup of factors were derived from the Digital Elevation Model (DEM) and included: slope gradient (steepness), slope 
curvature (plan curvature), slope aspect, contributing upstream area and elevation). The second group was derived from a 
1:5.000 scale map constructed using satellite images and included: land-use, and geomorphology, distance to roads and 
streams. The third group of factors including lithology and distance to faults was constructed from a 1:50000 scale geological 
factor map. 
 It’s largely accepted that the choice of landslide conditioning factors can improve the result of the prediction model 
and that the selection of minimum conditioning factors have sometimes been difficult for geomorphologists (Aleotti and 
Chowdhury, 1999; Fell et al., 2008; Guzetti et al., 1999). This is because not all factors play a role in the occurrence of each 
landslide or landslide type (Che et al., 2012).Two basic weights estimation methods and the Chi square 2x2 contingency table 
were used to select the best variables influencing landslides in the area. This includes the “Accountability and Reliability” 
indices (Blahut et al., 2010; Abella, 2008) and Chi square test of contingency. The accountability indices estimates the total 
number of landslide pixels in sub-classes of the factor map whose average landslide density is greater than the average density 
in the factor map divided by the sum of landslide pixels in the entire area and multiplied by 100. It is mathematically 
expressed as; 

ݕݐ݈ܾ݅݅ܽݐ݊ݑ݋ܿܿܣ = Σ	(ୗ୧வ஺௩஽஺)
Σ	(ୗ୧ୈ୅)  (1)     100	ݔ

Si>AvDAis the area of sub-classes in factor map with landslide density is equal or greater than the general average of the factor 
map; SiDA is total area with landslides in the factor map. 

The Reliability index estimates the sum of landslide cells of those subclasses with landslide densities greater than the 
average density of the factor map (study area), divided by the total area of those classes and multiplied by 100. This was 
expressed as;  

 ܴ ݕݐ݈ܾ݈݅݅ܽ݅݁ = Σ	(ୗ୧வ஺௩஽஺)
Σ	(୒ୗ୧)

 (2)       100	ݔ
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NSi = total area of classes with landslide density greater than the average density in the map.  
 The Chi square test on contingency table (Eq. 6), was also used to select the factors to be used in the final model. This 
statistical significance test measured the “goodness of fit” of observed and expected values. The maximum likelihood function 
was used to estimate the parameters most likely to cause an event (observed data) with the odds reflecting the probability of 
landslide occurring, to the probability that it will not occur.  The odds ratio using “Chi Square” was computed using the 
following expression; 
ܺଶ = ∑ (௢ି	௘)మ

௘
       3a 

Where “o” represents observed frequencies and “e” represents expected frequencies 
ܩ = 2∑	݂. ௙)݊ܫ

௙௜
)       3b 

Where “G” represents the Likelihood Ratio statistic, f represents observed values, fi represents expected values, and “ln” 
indicates the log to be taken. 
Variables whose computed p-value were lower than the significance level alpha=0.05 meant a rejection of the null hypothesis 
H0, and acceptance of the alternative hypothesis Ha. Those variables whose rows and columns were independent (H0), were 
accepted. 
 

 
Figure 3: Selected landslide conditioning factors used in the study 

 
The results of the two variables selection methods had some differences. For instance, the accountability and 

reliability index showed that the lithology and fault factors weren’t significant landslide conditioning factors. Distance to faults 
and curvature were to be rejected in Chi square test. Amongst the eleven variables that were initially considered, seven of 
them including: slope gradient, aspect, curvature, elevation, geomorphology, land-use and lithology were selected (fig. 3) to be 
used as independent prediction variables in the logistic regression model.  
 
2.2. Computing Process 

The logistic regression model also called the log it model was used to analyse the relationship between multiple geo-
environmental factors (X1, X2, Xn) and landslides dataset (y). It is a multivariate regression between a dependent variable and 
several independent variables (Atkinson and Massari, 1998). This model has proven to be reliable in analysing the relationship 
between multiple independent variables and a dependent variable that are dichotomous (Dai and Lee, 2004). The presence or 
absence of landslides denoted as Y=1 and Y=0 are represented by the binary variable Y and n is the number of covariates 
expressed as X1, X2, Xn. The probability of landslide occurrence expressed as Y=1 is a function of X1, X2, Xn using the samples of 
m (X11, X12, X13…., X1n; Y1), (Xm1, Xm2, Xm3….,Xmn;Ym).  In the Logistic regression model, P(Y=1) is the expected value of Y given the n 
independent variable (X1, X2, Xn) as Y is the indicator variable. To avoid that the P(Y=1) should not lie between zero and 1, we 
use the odds that Y=1 instead of the probability that Y=1. This is expressed as: 

ݕ)ݏܱ݀݀ = 1) = ௉(௒ୀଵ)
ଵି௉(௒ୀଵ)

   (4) 
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Figure 4: Illustration of the Logistic Regression procedure used in the study 

 
To avoid that the estimated probability should not exceed the maximum or minimum possible values of the probability, the 
natural logarithm of the odds that Y=1 was used as the dependent variable (Dai and Lee 2003) and expressed as: 

(ܻ)ܮ = ߙ + ଵߚ ଵܺ + ⋯ . .  ௡ܺ௡   (5)ߚ	+
Landslide modeling through Logistic Regression Analysis (LRA) makes use of estimated coefficients, standard errors, and p-
values and the model was applied following the principles laid down by Hosmer and Lemeshow (2000). 
Using the laws of exponent and log, (i.e., converting Logit (Y) to odds and odds to Y=1), the probability of landslides (P) to 
occur in the m sample is expressed as: 

ܲ = ଵ	
ଵା	୉୶୮	[ି(αାβభଡ଼భାβమଡ଼మା⋯ାβ౤ଡ଼౤)]

     (6)            

 
Where, P (0, 1) = Probability of an area to be stable or unstable; X1, X2, Xn are the Independent variables; ߚଵ ଶߚ ,  ௡are theߚ.… ,
regression coefficients; ߙ is the value of the intercept  
The model was applied using 50% of the inventory (training landslides) extracted randomly using the spatial analysis tool in 
ArcGIS as explained in material and methods section and applied following the scheme shown in figure 4. 
 
3. Results 
 
3.1. Evaluation of Conditioning Factors and Susceptibility Mapping 

The overlay of negatives or non-landslide points and landslides (positives) over each conditioning factors maps 
helped train the model in evaluating the relationship between each predictive variable and landslides. The contribution of 
each class of the predictive factor to landslides was measured by the derived weight values of those classes. This was 
determined by the number of positives found on each unit of the classified factor map. The higher the number of classes with 
high derived weight values, the more important is the conditioning capacity of that factor and the higher its influence on the 
susceptibility index map. The maximum likelihood convergence algorithm of the logistic regression(Eq. 3) was used to get the 
best fitting of the model. This was then used to infer the weight of each of the variables.  Each class of the classified predictive 
variable map had a weighted value measured in coefficients that ranged from 0 to 1. The coefficient(weight values) of 
conditioning factors (table1), range from -2.775 – 0.927 and expresses the relationship between stable and unstable areas of 
the map. 
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Data set Sub-classes Coefficient of 
factor map 

Slope steepness (1) <5; (2) 5-10; (3) 10-15; (4) 15-20; (5) 20-25; (6) 25-30; (7) 30-35; (8) >35  0.927 
Slope elevation (1) 1190-1200; (2) 1200-1300; (3) 1300-1400; (4) 1400-1900; (5) 1900-2600 -0.001 
Slope aspect (1) Plain; (2) N; (3) NE; (4) E; (5) SE; (6) S (7) SW; (8) W; (9) NW 0.005 
Slope curvature (1) Convex slopes; (2) Rectilinear slopes; (3) Convex slopes -0.440 
Geomorphology (1) Anaclinal slope; (2) cataclinal slope; (3) Deeply eroded scarp; (4) Mid-slope terrace; 

(5) Rectilinear slope; (6) Fluvial valley; (7) erosion zone; (8) table land; (9) pediment 
slope; (10) Volcanic cones 

-0.037 

Lithology (1) Basalt; (2) Rhyolite; (3) Ignimbrite; (4) Trachyte; (5) Pan African Granite 0.124 
Lands use (1) Bare soil; (2) scattered settlements (3) Low shrub; (4) Grass land; (5) Crop land; (6) 

Rangeland; (7) Scanty forest; (8) Continuous settlement (9) Thicket woodland 
0.001 

 Logistic regression -2.775 
Table 1: Conditioning factors used in the study and their coefficients 

 
Results from the modeling scheme (fig. 2), showed that the slope, lithology, aspect land-use are the most important 

causal factors of landslides. As earlier noted by Dietrich and Montgomery, (1998) the slope is the most important factor 
determining factor of slope failure and in this case, it has a coefficient of 0.927. Within the slope factor, some classes had 
higher coefficients which reflected the number of positives in the class. For instance, the classified slope map shows that the 
15o-20o slope class has 37% of landslides and the 25o-30oslope class has 16% of landslides. The high coefficient of these 
classes shows their significant in the model. Within the aspect factor, the North-West slope with very few landslides has a low 
coefficient like the free fall face of the cliffs which are known for rock fall (Eberhardt, 2003a).The bare rock formation has a 
very thin layer of coarse rock fragments or debris which is resistant with little soil cover which do not constitute enough 
material for a slide. Aspect had a positive weighted coefficient of 0.005 meaning that it is influential in slope instability. The 
geological factor has a significant coefficient of 0.124 which shows that petrogenetic processes are an important determining 
factor of slope movement. Large parts of the escarpment slope where most of the slides were registered are covered by 
trachyte and rhyolite formed in the quaternary and underneath these rocks are older and more resistant volcanic rocks. The 
porous nature of weathered materials developed from these rocks facilitate the infiltration of water into greater depths. This 
weakens the cohesion in rock material and making them unstable and more likely to move under gravity. The peripheral areas 
of the escarpment have moderate slopes composed of granites rocks with deep soil profiles. These slopes are less likely to fall 
since a large amount of water is required to trigger landslides and this is only possible when rainfall is prolonged and heavy. 
The coefficient of the Land-use factor (0.001) was not as impressive as expected given its multifunction role in causing slope 
instability in the area. Anthropogenic activities are quite intense around the peripheries of the escarpment whose slopes are 
very steep holding large amounts of unconsolidated material from weathering processes. The Land-use factor is not only a 
conditioning factor but is also a trigger of slope movements in the area. For instance, intensive agricultural activities along the 
escarpment wall has reduced the cohesion of the rhyolite exposing it to gravitational pull. The year 2009 saw the greatest 
number of landslides in the area for decades (Afungang, 2015) and was linked to the undercutting of slopes and soil vibration 
during the construction of the Bamenda Up station – Down town new road. This shows the role of land-use as a trigger of slope 
failures. About half (46%) of the 110 registered landslides were on slopes affected to some degree by human activities. Land-
use also has an impact on other conditioning factors like the slope, curvature, geomorphology and soil cover and its influence 
is reflected in these factors. 

The slope elevation, geomorphology and curvature factor had less beta values with -0.001, -0.037 and -0.440 
coefficients respectively (table 1). The differences in high and low slopes didn’t have any real impact on landslides. Changes in 
the morphology and slope instability were more reflected in the land-use since most of the area is undergoing rapid 
urbanization. Slope failure was more associated to land-use because landslides were registered on slopes (concave, convex, 
and rectilinear) irrespective of the characteristics. 
 The final susceptibility of the area to landslides was developed by multiplying the predictive variable raster maps (fig 
3) by the weighted coefficient of their beta values (table 1) and combining these maps to get the susceptibility index map (fig 
5). This involved the integrated of the weighted maps in raster calculator and summing them (Eq.7).  
ݕݐ݈ܾ݅݅݅ݐ݌݁ܿݏݑܵ =	ୗ୪୮౭ౙ 	ା	୉୪ୣ୴౭ౙା	୅ୱ୮౭ౙ

ା		େ୴୲_୵ୡ	ା		ୋୣ୭୮୦୭_୵ୡ	
ା	୐୧୲୦_୵ୡ	ା	୐ୟ୬ୢ_୵ୡ

      (7) 

Where Slp is slope, Elev is elevation, Asp is aspect, Cvt is curvature, Lith is lithology, Land is land-use and Wc is weighted 
coefficient. 
The combination of the spatial probability layers of conditioning variables (Eq. 7) gave the susceptibility index map (fig. 5a).  
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Figure 5: Landslide Susceptibility maps of Bamenda escarpment zone 

 
The susceptibility map shows the probability of landslides ranging from 0.035332 to 0.99278. Slopes with many landslides 
(unstable zones) were classified by the model and separated from those with few or no slides (stable zones). To make the map 
better understood especially by non-specialists, the susceptibility map (Fig. 5a) was reclassified using predicted break values 
of the ROC curve (fig. 5b). The closer the susceptibility value nears zero the lesser the probability of landslides and the closer it 
moves to towards 1, the higher the probability of having a landslide event. The Bamenda escarpment line and the Mbatu 
Mountain that are frequently hit by landslides were shown to be highly susceptibility to future slope failure. 
 
3.2. Validation of the Susceptibility Model 

Many authors hold the opinion that the validation of susceptibility models is important in evaluating the modelling 
process and its ability in forecasting future landslides (Raia et al., 2014; Jaiswal et al., 2010; Fell et al., 2008; Chung and Fabbri, 
2003). Tien Bui et al. (2012) sited Chung and Fabbri (2003) as even saying that, when prediction models are not validated, 
they become useless and have no scientific significance. Thus, the model was validated to evaluate it’s performed in classifying 
stable and non-stable areas. The validation was done through the success and prediction rates method (Umar et al., 2014; Tien 
Bui et al., 2012; Chung and Fabbri, 2003). To estimate the success and prediction rate, the susceptibility index map was 
classified. Some common used classification methods include: equal Interval method, quantile method, the natural break 
method and the standard deviation method. Although there is no standard method, some authors prefer the equal area 
classification (Papathanassiou et al., 2013; Tien Bui et al., 2012; Lee, 2007). There is also no standard number of classes but 
some authors (e.g., Teixeira et al., 2014; Umar et al., 2014; Tien Bui et al., 2012; Jaiswal et al., 2010; Guzzetti, 2006) have used 
3-5 classes. The optimum cut-off value was taken based on the procedure described by Chung and Fabbri (2003) and Frattini 
et al. (2010), where the ROC curve “turns over” to the right (fig. 6b). At this point, the cut point is lowered by a large amount to 
catch only a few more landslide pixels. Five susceptibility levels were adopted to visualize the Landslide susceptibility index 
map.  

To construct the success rate curve of the training model, the computerized probabilities of the predictive factor maps 
using the training landslide dataset were combined with the binary values of the training model using the receiver operation 
curve (ROC) creator algorithm of the SPSS software. From here the mapping units (landslides) and terrain units’ correctly 
classified (fig. 5b) were estimated and the results reflected in the ROC curve. The horizontal axis (sensitivity or true positive) 
of the ROC curve is the estimated probability of terrain units or proportion of landslides rightly classified while the horizontal 
axis (1-specificity or false negative) expresses the probability of the area with no landslides correctly classified. The plotting of 
the accumulative frequency of landslides and accumulated area gave the spatial probability of landslide occurrence in the area. 
The success rate measures the goodness of fit for the landslide model to the training data. However, it is not suitable to use the 
success rate in measuring the real efficiency of the training model since it was built using the training group of landslides (Tien 
Bui et al., 2012; Lee, 2007; Umar et al., 2014). If done, it will turn to overestimate the capacity of the model. Because of this, the 
validation of the model was done using the prediction rate constructed from the validation group of landslides. The prediction 

http://www.ijird.com


 www.ijird.com                                                                              December, 2017                                                                              Vol 6 Issue 12 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT        DOI No. : 10.24940/ijird/2017/v6/i12/DEC17076 Page 195 
 

ROC curve was obtained by overlapping the validation dataset of landslides (896 grid cells) with the susceptibility index map. 
The ROC creator algorithm of the SPSS software was again used to construct the prediction curve. Contrarily, to the success 
rate, the prediction rate explains the success rate (Ninu et al., 2014) and how well the conditioning factors predict future 
landslides. 

 

 
Figure 6: ROC curve for the logistic regression (A) validation model (B) training model 

 
By overlaying the two groups of landslides with the landslide susceptibility index, the cumulative percentages of existing 
landslide against landslide susceptibility index values were calculated. 

The prediction rate curve (fig 6a) has a better classification of susceptibility area more than the success rate curve 
(fig.6b). The prediction rate curve was used to interpret the susceptibility map. Based on the predicted probabilitiesof the 
prediction ROC curve, 55%,  17%, 14%, 9% and 5% of slope failureare predicted to occur on 5%, 7%, 11%, 28% and49% of 
the study area respectively. The frequency of landslidesgenerally decreases with increase in the susceptibility area as 
landslides are mostly concentrated on particular zones. This means that the predictive value of the ROC curve varies with 
variation in susceptibility area. The prediction ROC curve indicates thatabout 24% of terrain units has an estimated 
probability of 0.8 (fig. 6a) making this zone highly susceptible to landslides. The very high, high, moderate, low and very low 
susceptibility classes (class I, II, III, IV and V) had predictive values of;  0,55; 0,17; 0.14, 0,09 and 0,50 respectively (table 2). 
The predictive values show the probability of each class to be affected by future landslides. The very high and high 
usuceptibility classes are the most dangerous zones. But for civil protection purposes, the moderate class should also be 
considered as a high potential landslide zone because many devastating events took place in this class.  
 

Susceptibility class Class Area (m2) Susceptibility zone Prediction values of susceptibility class 
I 
II 
III 
IV 
V 

Top 5% 
5 – 12% 

12 – 23% 
23 – 51% 

51 – 100% 

6716085 
9402519 

14775387 
37610076 
65817633 

Very high 
High 

Moderate 
Low 

Very low 

0.55 
0.17 
0.14 
0.09 
0.05 

Table 2: Characteristics of susceptibilit classes of the classified model 
 
3.3. Interpretation of Results and Estimation of Model’s Performance 

There are many parameters used in interpreting the results of the logistic regression model. Three of them include the 
“goodness of fit”, accuracy of the model denoted by R2 and the area under the curve (AUC). The goodness of fit was used by 
comparing the likelihood L0 for the null model and the likelihood L0 of the fitted model where the slope parameters are zero 
(0). The number of the independent variables is equal to the degree of freedom of the R2 value. The higher the p-value 
associated with the R2, the higher the significance of the regression parameters and the better the fit to the data than the null 
model (Dai et al. 2003). The R2 statistic was calculated as: 

ܴଶ = −2{log(0ܮ) −  (7)     {(1ܮ)݃݋ܮ
The success curve has a regression fitting function of R2=0.9243 and the prediction curve shows R2=0.9569. The area under 
the curve (AUC) is also considered as a good qualitatively measure to assess the accuracy of susceptibility models (Lee, 2007; 
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Chung and Fabbri, 2003; Tien Bui et al., 2012). It represents the probability that the landslide susceptibility value for a 
landslide mapping unit (Y=1) estimated by the model will exceed the result for a randomly chosen no-landslide points (Y=0). 
The AUC varies from zero (0) to one (1), and the closer the AUC value towards 1, the higher the prediction accuracy of the 
model. The AUC for the training model is 0.805 while that for the validation model is 0.875. These functions indicate how well 
the model has classified terrain units with no slides against mapping units with landslides. The higher AUC rate of the 
validation curve shows that it is more accurate to predict landslides than the success curve. 

Notwithstanding the good results of the validation process, the performance of the model needs to be estimated in 
order to improve its predictive power. This was done using the error index of the ROC curve (Fawcet, 2006; Jaiswal et al., 
2010). As such, different metrics including the true positive rate (TPR), true negative rate (TNR), the accuracy and the 
precision rate (Raia et al., 2014, Teixeira et al. 2014) of the model were computed (Eq. 8). These rates were calculated 
following the formulas below:  

TPR = TP/(TP+FN) 
TNR or sensitivity = TN/(FP+TN) 
FPR =FP/(FP+TN)       (8) 
FNR = FN/(FN+TP) 
ACC = (TP+TN)/ (TP+FN+FP+TN) 
PPV = TP/ (TP+FP)   

Where: TP is True Positive; TPR is True positive rate; TN is True Negative; TNR is True Negative Rate: FP is False Positive; FPR 
is False Positive Rate; FN is False Negative; FNR is False Negative Rate; PPV is Precision; ACC is Accuracy  

The true positive and true negative was considered as correct assignments while FP and FN are model errors. Based 
on the prediction ROC curve, all grid cells with landslide probability less than 0.8were considered as probable stable areas 
while those above 0.8 were considered unstable (i.e., potential landslide) cells. To optimize and evaluate the efficiency of the 
modeling process, the unstable (40654 pixels) and stable zone (295238 pixels) were compared with the landslide inventory 
map. The observed landslide truly identified by the model (hit area) had 227 pixels thus giving a true positive rate (TPR) of 
0.55446 and the unstable areas defined by the model to be unstable had 295058 grid cells giving a true negative rate (TNR) of 
0.87949. Model errors including FP (40430pixels) and FN (180 pixels)had rates of 0.12051 and 0.44554 respectively (table 3). 
The accuracy rate of the model stood at 0.879 and the precision was 0.006 calculated from the positive and negative values 
(Table. 3).  
 

Indicators TP       TPR TN   TNR FP   FPR FN FNR ACC PPV 
Prediction rates 224 0.56 295058 0.88 40430 0.12 180 0.45 0.88 0.006 

Table 3: Estimator of model performance 
 
4. Discussion 

Multivariate regression analysis of binary sequences is often applied in the study of slope failures. The accountability 
and reliability index were used to select the most important factors affecting landslides in the area. Among the tengeo-
environmental variables that were considered, seven were retained based on their favorable relationship to landslides and 
included: slope, curvature, elevation, aspect, geomorphology, lithology and land use. Instable and stable areas were 
represented in terms of positives (landslide) and negatives (non-landslide) denoted as 1 and 0. The evaluation of each 
conditioning factor and their coefficients, (e.g. slope 0.927, aspect 0.005, land-use 0.001, Curvature -0.44, geomorphology -
0.037, elevation -0.001, lithology 0.124), and a constant of -2.775), gave the relationship of each factor to slope movement. The 
correlation between the causal factors and the landslide inventory map showed that the slope is the most important landslide 
conditioning factor in the area just as in many areas of the world (Dietrich et al., 1998; Montgomery and Dietrich 1994). 
Through the binary function of the logistic regression using the laws of exponent (exp) and log (L), the probability (P) of the 
area to be affected by landslides was determined. This reduces subjectivity common with qualitative analyses that have been 
used to assess landslides in the area. The susceptibility index map analyses satisfy the spatial probability component of Varnes 
and the IAEG (1984) definition of landslides which focused on “WHERE” landslides will occur. The maximum likelihood using 
the “Chi Square” 2X2 table was more reliable in examining stable and unstable areas and making relationships with the odds 
(that Y=1 instead of the probability that Y=1), giving the probability of the area to be affected or not affected in the future by 
landslides. About 55% of the 22400m2 area of landslides was found on only 4% of the susceptible area while the rest 52% of 
the area had only 5% landslides. This shows that landslides susceptibility is concentrated on a small area. The classification of 
the susceptibility index map into low, medium, high and very high susceptibility zones using the ROC curve graduations 
(fig.5a), did not only improve the efficiency of the model but made the map easy to understand by non-specialist users such as 
environmental planners, policy makers and civil protection officers. This is in accordance with other authors findings such as 
Soeters and Van Westen, (1996), Zêzere et al. (2004). The quantitative validation of the model made the assessment more 
valuable scientifically. The estimation of the model’s performance showed that the logistic regression model is good means of 
landslide forecast in the area. This process also enhances the quality of the model by improving our understanding of the 
landslide process.  
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However, the assessment had some short comings. The predictive variables (fig.3)which forman integral part inland 
slide susceptibility assessment (Bateira and Soares, 1997; Carrara et al., 1998; Varnes et al., 1984) were constructions at the 
scale of 1: 50000 (fig.3) which is too large for the identification of slides <50m2.Although such a scale has been used for 
regional and sub regional landslide investigations, better results can be obtained using more detailed maps with scales of 
1:5000, 1: 10000.Despite the poor nature of the basic information, the success rate (80%) and prediction rate (87%) was quite 
good and are similar to results(prediction rate of 89%) obtained using the Information Value method in the same area 
(Afungang and Bateira, 2016). The slide differences in these rates may have been caused by differences in the formof 
landslides representation since landslides were represented as point in the logistic regression model and polygons in the 
Information value model. 
 
5. Conclusion 

The assessment has showed that the logistic regression model can be applied in data deficiency zones using few 
landslide conditioning factors with basic information on landslides. The physical characteristics of the Bamenda escarpment 
area and its peripheries also described by some authors (Guedjeo et al., 2013; Gountié et al., 2012; Eze et al., 2004; Lambi, 
2004) is a fertile ground for landslides. About 22400m2study area have been affected by landslides and this result points to the 
fact that landslide remains a threat to live and property in the area. Based on recommendations onlandslide conditioning 
factors (Soares and Bateira, 2013; Dietrich and Montgomery, 1998) and guidelines on landslide susceptibility analyses (Fell et 
al., 2008), the background information used in the study area needs to be improved upon to achieve good susceptibility 
assessment since the results of susceptibility models highly depend on the quality of quality of the input data(Zêzere et 
al.,2004).The outcome of the work further strengthens the quantity and quality of data available for use by civil protection 
units and it lays the groundwork for landslide hazard and risk assessments in the area. 
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